Thiessen Polygon Method -Procedure

Draw dashed
lines between
ppt
measurements

Thiessen Method - Procedure

Draw perpendicular bisectors

Determine areas (AA, AB, and AC)

Thiessen Polygon Method Procedure

Estimating Areal Ppt

Isohyetal method

Isohyetal Method - Procedure

Determine
contours of
equal
precipitation
(isohyetal
lines)

Isohyetal Method - Procedure

- Determine areas between each isohyetal
- Estimate representative ppt for each region
- Calculate

Isohyetal Method - Procedure

Least Squares

$$M = \sum_{g=1}^G (\hat{p}_g - P_g)^2$$

Similar to the isohyetal method, except that the weight determined by fitting a trend surface to the measured such that the error (M) is minimized:

P_g is measured value p_g is weight g is an individual gauge

Spline-Surface Method

A spline surface is similar to the least squared method. However, it finds the surface with minimum curvature that fits exactly through the measured values. It is computation burdensome. However, that is no longer a problem with todays computational power.

Inverse-Distance Interpolation

 $w(d) = 1/d^{p}$

d is distance; p is the weighting function, often p = 2

Interpolation of the weights are a function only of the distance be each of the grid points and each of the G gauge locations. Inverse distance weighting is the simplest interpolation method.

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Inorganic Nitrogen Wet Deposit

Precipitation: March Climatology (1981-2010)

The PRISM Approach to Mapping Climate in Complex Regions

Christopher Daly Director, PRISM Group

Northwest Alliance for Computational Science and Engineering Department of Geosciences Oregon State University Corvallis, Oregon, USA

PRISM Overview 5-8-08

Rationale

- Observations are rarely sufficient to directly represent the spatial patterns of climate
- Human-expert mapping methods often produce the best products, but are slow, inconsistent, and non-repeatable
- Purely statistical mapping methods are fast and repeatable, but rarely provide the best accuracy, detail, and realism

Therefore...

 The best method may be a statistical approach that is automated, but developed, guided and evaluated with expert knowledge

Knowledge-Based System KBS

- Knowledge acquisition capability Elicit expert information
- Knowledge base Store of knowledge
- Inference Engine Infer solutions from stored knowledge
- User interface Interaction and explanation
- Independent verification Knowledge refinement

PRISM

Parameter-elevation Regressions on Independent Slopes Mo

- Generates gridded estimates of climatic parameters
- Moving-window regression of climate vs. elevation for each grid cell
 - Uses nearby station observations
- Spatial climate knowledge base weights stations in the regression function by their physiographic similarity to the target grid cell

PRISM Overview 5-8-08

The PRISM Knowledge-Based System

Knowledge Base

- Elevation Influence on Climate

PRISM Overview 5-8-08

1961-90 Mean January Precipitation, Sierra Nevada, CA, USA

1961-90 Mean August Max Temperature, Sierra Nevada, CA, USA

1963-1993 Mean November Precipitation, Puerto Rico

1963-93 Mean June Maximum Temperature, Puerto Rico

PRISM Graphical Interface

1971-90 Mean February Precipitation, European Alps

1961-90 Mean September Max Temperature, Qin Ling Mountains, Chi

PRISM Moving-Window Regression Function

Governing Equation

Moving-window regression of climate vs elevation $y = \beta_1 x + \beta_0$

Y = predicted climate element

- x = DEM elevation at the target cell
- $\boldsymbol{\beta}_0$ = y-intercept
- $\boldsymbol{\beta}_1 = \text{slope}$

x,y pairs - elevation and climate observations from nearby climate stations

Station Weighting

Combined weight of a station is:

$W = f \{W_d W_z W_c W_f W_p W_I W_t W_e\}$

- Distance
- Elevation
- Clustering
- Topographic Facet (orientation)

- Coastal Proximity
- Vertical Layer (inversion)
- Topographic Index (cold air pooling
- Effective Terrain Height (orographi profile)

Knowledge Base

- Elevation Influence on Climate
- Terrain-Induced Climate Transitions (topographic facets, moisture index)

Rain Shadow: 1961-90 Mean Annual Precipitation Oregon Cascades

Knowledge Base

- Elevation Influence on Climate
- Terrain-Induced Climate Transitions (topographic facets, moisture index)
- Coastal Effects

Coastal Effects: 1971-00 July Maximum Temperature Central California Coast – 1 km

