IMMEDIATE RESPONSE REQUIRED

Your article may be published online via Wiley's EarlyView® service (http://www.interscience.wiley.com/) shortly after receipt of corrections. EarlyView® is Wiley's online publication of individual articles in full-text HTML and/or pdf format before release of the compiled print issue of the journal. Articles posted online in EarlyView® are peer-reviewed, copy-edited, author-corrected, and fully citable via the article DOI (for further information, visit www.doi.org). EarlyView® means you benefit from the best of two worlds - fast online availability as well as traditional, issue-based archiving.

Please follow these instructions to avoid delay of publication

☐ **READ PROOFS CAREFULLY**
- This will be your only chance to review these proofs. Please note that once your corrected article is posted online, it is considered legally published, and cannot be removed from the Web site for further corrections.
- Please note that the volume and page numbers shown on the proofs are for position only.

☐ **ANSWER ALL QUERIES ON PROOFS** (Queries for you to answer are attached as the last page of your proof.)
- List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or in the post.

☐ **CHECK FIGURES AND TABLES CAREFULLY**
- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

☐ **COMPLETE CTA (if you have not already signed one)**
- Please send a scanned copy with your proofs and post your completed original form to the address detailed in the covering e-mail. We cannot publish your paper until we receive the original signed form.

☐ **OFFPRINTS**
- 25 complimentary offprints of your article will be dispatched on publication. Please ensure that the correspondence address on your proofs is correct for despatch of the offprints. If your delivery address has changed, please inform the production contact for the journal - details in the covering e-mail. Please allow six weeks for delivery.

Additional reprint and journal issue purchases
- Additional paper reprints (minimum quantity 100 copies) are available on publication to contributors. Quotations may be requested from mailto:author_reprints@wiley.co.uk. Orders for additional paper reprints may be placed in advance in order to ensure that they are fulfilled in a timely manner on publication of the article in question. Please note that offprints and reprints will be dispatched under separate cover.
- PDF files of individual articles may be purchased for personal use for $25 via Wiley's Pay-Per-View service (see http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html).
- Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic or print form, nor deployed in part or in whole in any marketing, promotional or educational contexts without further discussion with Wiley. Permissions requests should be directed to mailto:permreq@wiley.co.uk
- Lead authors are cordially invited to remind their co-authors that the reprint opportunities detailed above are also available to them.
- If you wish to purchase print copies of the issue in which your article appears, please contact our Journals Fulfilment Department mailto:cs-journals@wiley.co.uk when you receive your complimentary offprints or when your article is published online in an issue. Please quote the Volume/Issue in which your article appears.
COPYRIGHT TRANSFER AGREEMENT

Re: Manuscript entitled ...

(the "Contribution") written by ..

(the "Contributor") for publication in ...

(the "Journal") published by John Wiley & Sons Ltd ("Wiley").

In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us with the submission of your manuscript. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue Copyright © [year] John Wiley & Sons Ltd or copyright owner as specified in the Journal.)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor’s Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues printed or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor’s own website for personal or professional use, or on the Contributor’s internal university or corporate networks/intranet, or secure external website at the Contributor’s institution, but not for commercial sale or for any systematic external distribution by a third party (e.g.: a listserver or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: “This is a preprint of an article accepted for publication in [Journal title] Copyright © [year] (copyright owner as specified in the Journal).” After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: “This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]” and should provide an electronic link to the Journal’s WWW site, located at the following Wiley URL: http://www.interscience.wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.

2. The right, without charge, to photocopy or to transmit on-line or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor’s personal or professional use, for the advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with paragraph D2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words) from the Contribution, for the Contributor’s own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor’s employer. The abstract shall not be included as part of such selected text.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor’s institution free of charge or to be stored in electronic format in datarooms for access by students at the Contributor’s institution as part of their course work (sometimes called “electronic reserve rooms”) and for in-house training programmes at the Contributor’s employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor’s employment (as a “work-made-for-hire” in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company’s internal network. Upon payment of the Publisher’s reprint fee, the institution may distribute (but not re-sell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley’s written permission, and payment of any applicable fee(s).
E. GOVERNMENT CONTRACTS
In the case of a Contribution prepared under US Government contract or grant, the US Government may reproduce, without charge, all or portions of the Contribution and may authorise others to do so, for official US Government purposes only, if the US Government contract or grant so requires. (Government Employees: see note at end.)

F. COPYRIGHT NOTICE
The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR’S REPRESENTATIONS
The Contributor represents that the Contribution is the Contributor’s original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature(s) to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for “preprints” as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley’s permissions form or in the Journal’s Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the right or privacy of others, or contain material or instructions that might cause harm or injury.

Tick one box and fill in the appropriate section before returning the original signed copy to the Publisher

☐ Contributor-owned work

Contributor’s signature

..

Date ...

Type or print name and title

..

Co-contributor’s signature

..

Date ...

Type or print name and title

..

Attach additional signature page as necessary

☐ Company/Institution-owned work (made-for-hire in the course of employment)

Contributor’s signature

..

Date ...

Type or print name and title

..

Company or Institution
(Employer-for Hire)

..

Authorised signature of Employer

..

Date ...

Type or print name and title

..

☐ US Government work

Note to US Government Employees
A Contribution prepared by a US federal government employee as part of the employee’s official duties, or which is an official US Government publication is called a “US Government work”, and is in the public domain in the United States. In such case, the employee may cross out paragraph A1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee’s duties or is not an official US Government publication, it is not a US Government work.

☐ UK Government work (Crown Copyright)

Note to UK Government Employees
The rights in a Contribution by an employee of a UK Government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
Estimating sublimation of intercepted and sub-canopy snow using Eddy covariance systems

Noah P. Molotch,1* Peter D. Blanken,2 Mark Williams,2,3 Andrew Turnipseed,4 Russell Monson5 and Steven Margulis1

1 Department of Civil and Environmental Engineering, University of California, Los Angeles, California, 90095, USA
2 Department of Geography, University of Colorado, Boulder, Colorado, 80309, USA
3 Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309, USA
4 National Center for Atmospheric Research, Boulder, Colorado, 80305, USA
5 Department of Ecology and Evolutionary Biology; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA

Abstract:

Direct measurements of winter water loss due to sublimation were made in a sub-alpine forest in the Rocky Mountains of Colorado. Above-and below-canopy Eddy covariance systems indicated substantial losses of winter-season snow accumulation in the form of snowpack (0.41 mm d⁻¹) and intercepted snow (0.71 mm d⁻¹) sublimation. The partitioning between these over- and under storey components of water loss was highly dependent on atmospheric conditions and near-surface conditions at and below the snow/atmosphere interface. High above-canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow-surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above-canopy latent heat fluxes, high within-canopy sublimation rates (maximum = 3.7 mm d⁻¹), and diminished sub-canopy snowpack sublimation. These results indicate that sublimation losses from the sub-canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compiles comprehensive studies of snow sublimation in forested regions that integrate sub-canopy and over-storey processes. Copyright © 2007 John Wiley & Sons, Ltd.

KEY WORDS vegetation canopy; snow interception; sublimation; Rocky mountains; Eddy covariance

Received 23 June 2006; Accepted 16 January 2007

INTRODUCTION

Sublimation of intercepted snow constitutes a significant component of the overall water balance in many seasonally snow-covered coniferous forests (Schmidt and Troendle, 1992; Lundberg and Halldin, 1994; Pomeroy and Gray, 1995; Essery et al., 2003). In such environments, approximately 60% of total annual snowfall can be intercepted by the canopy (Hedstrom and Pomeroy, 1998) and associated sublimation losses may exceed 30% (Montesi et al., 2004). For a given canopy structure and snowfall history the distribution of radiant and turbulent fluxes dictates sublimation rates and therefore strongly influences the magnitude of spring snowmelt and subsequent growing-season water availability. Interactions between these fluxes and the sublimation of intercepted snow and the sub-canopy snowpack are poorly understood in forested mountainous regions (Bales et al., 2006). This knowledge gap and the complexity of interactions between the snowpack and vegetation has motivated detailed analyses of mass and energy fluxes between the snowpack, vegetation, and the atmosphere (Davis et al., 1997; Sicart et al., 2004).

Various techniques have been used to estimate sublimation rates from intercepted snow. Measurement of the components of snow sublimation is particularly challenging in forested terrain as winter-time above-canopy water vapour flux measurements integrate mass loss from intercepted snow and from the sub-canopy snowpack. In this regard, numerous studies have focused on estimating sublimation losses from snowpacks in unforested areas (Pomeroy and Essery, 1999; Pomeroy and Li, 2000; Fassnacht, 2004). Similarly, much work has been devoted towards estimating sublimation losses from intercepted snow (Schmidt and Troendle, 1992; Pomeroy and Schmidt, 1993; Montesi, et al., 2004). Harding and Pomeroy (Harding and Pomeroy, 1996) present some of the first observations of turbulent fluxes in snow-covered forests. Similarly, differences in energy fluxes between snow-covered and snow-free canopies have been documented (Nakai et al., 1999). These studies complement several works on snow–vegetation interactions in high-latitude boreal forests (Blanken et al., 1997; Davis et al., 1997; Hardy et al., 1997; Blanken et al., 1998; Hedstrom and Pomeroy, 1998; Pomeroy et al., 1999; Link and Marks, 1999a,b; Blanken and Black, 2004). Lacking is a thorough analysis of the above- and...
below-canopy energy fluxes and associated differences in sublimation at an individual site—particularly, at mid-latitude.

Measurement of sublimation from intercepted snow has primarily focused on tree-weighting techniques (Schmidt et al., 1988; Schmidt, 1991; Nakai et al., 1994; Montesi et al., 2004). Several factors lead to uncertainty in this approach and towards limiting applicability at the stand scale. First, a somewhat subjective analysis must be used to separate unloading from sublimation. Second, sublimation of unloaded snow is not considered and thus sublimation losses may be underestimated (Montesi et al., 2004). Third, tree-instability can cause false readings. Finally, intermittent snowfall events and small trace events can introduce uncertainty, effectively countering sublimation losses and leading to underestimates in sublimation losses if not considered. In terms of scaling from individual trees to the stand scale, challenges are encountered with regard to the lack of detailed canopy information. This lack of detailed canopy information also complicates the use of models for estimating sublimation losses (Pomeroy and Schmidt, 1993; Pomeroy et al., 1998). All of these limitations could be accounted for in techniques that integrate all of these processes by measuring above- and below-canopy water vapour flux.

Advances in process-level knowledge have been limited as sublimation can occur either from snow intercepted by the canopy, and/or from the snow that reaches the ground. Coniferous forests can intercept large quantities of snow, much of which sublimates from the canopy and does not reach the ground. Sublimation from the below-canopy snowpack is thought to be insignificant due to the low exposed surface area of the snowpack and low below-canopy wind speeds. However, there are potentially large longwave radiation fluxes if the canopy above is warm and snow-free, thus promoting sublimation and/or melting (Woo and Giesbrecht, 2000). Understanding the balance between sublimation from the canopy and snowpack is crucial to assist water and forest managers, especially in regions where forest thinning treatments are being considered.

Direct measurements of winter water loss by sublimation of snow from a sub-alpine forest in the Rocky Mountains of Colorado are presented here. Eddy covariance instruments were placed both above and beneath the canopy during March and early April 2002; the time before melting begins when winter sublimation is largely due to the heavy late-winter snows. The above- and below-canopy measurements allowed sublimation of intercepted snow to be separated from that of the snowpack, and estimates obtained over a much larger sample area than individual trees. Simultaneous measurements of the physical properties of the snow pack, soil moisture, as well as carbon dioxide flux measurements ensured that sublimation and not evaporation of melting snow or transpiration were being measured. The specific objectives of this research were to: (1) determine snow sublimation rates in a sub-alpine forest; (2) partition snow sublimation into above- and below-canopy components; and (3) explore relationships between atmospheric and snowpack conditions, and snow sublimation rates.

STUDY SITE

This work was conducted at the Niwot Ridge Forest, Colorado Ameriflux site (40°1’58"N; 105°32’47"W), located at an elevation of 3050 m approximately 8 km east of the continental divide [Figure 1]. The area 1 km² east of the tower is dominated by Engelman spruce (7 trees ha⁻¹) and lodgepole pine (27 trees ha⁻¹). Rising at a slope of about 6–7°, the 1 km² area west of the tower contains sub-alpine fir (16 trees ha⁻¹), Engelman Spruce (10 trees ha⁻¹) and lodgepole pine (9 trees ha⁻¹). Maximum leaf area index during the growing season is approximately 4-2 m² m⁻². Canopy height averaged 11-4 m with an average gap fraction of 17%. The site is in a state of aggradation, recovering from logging activities in the early part of the twentieth century. The hydrology of the
ESTIMATING SUBLIMATION OF SUB-CANOPY SNOW USING EDDY COVARIANCE SYSTEMS

METHODS

Flux measurements

Water vapour fluxes, (latent heat flux; \(\lambda E \)) were calculated as 30-min means of 10-Hz measurements over a 40 d mid-winter period (day of year (DOY) 60–100, 2002) using the Eddy covariance (EC) method (Goulden et al., 1996; Turnipseed et al., 2002):

\[
\lambda E = L_n w' \rho' \mu
\]

where \(L_n \) is the latent heat of sublimation, \(w' \) is the deviation of vertical wind velocity (m s\(^{-1}\)) from the 1/2-h mean, \(\rho' \) is the deviation of the water vapour density from the 1/2-h mean. The above- and below-canopy EC systems were mounted at heights of 21.5 and 1.7 m above-ground, respectively, from towers separated by a distance of approximately 20-m. The above- and below-canopy EC systems and other meteorological instruments are summarized in Table I. Post-processing corrections to the EC data included mathematical coordinate rotation of the mean lateral and vertical wind velocities to zero; only the lateral component was corrected for in processing the sub-canopy data (Baldocchi and Hutchinson, 1987). The sonic anemometers’ virtual air temperature as corrected, accounting for wind speed normal to the sonic path and humidity effects (Schotanus et al., 1983). See Turnipseed et al. (2002, 2003) for complete details.

Components of snow sublimation were computed as:

\[
\lambda E_{c,s} = \lambda E_{c,x} + \lambda E_{c,i}
\]

where \(\lambda E_{c,i} \) is the total sublimation from the system measured using the above-canopy EC instruments (21.5 m above ground) and \(\lambda E_{c,s} \) is snowpack sublimation determined from the sub-canopy EC instruments (1.7 m above ground). Water vapour fluxes associated with sublimation of intercepted snow, \(\lambda E_{c,i} \) were determined as the difference of measured above- and below-canopy fluxes. In this regard, we assumed that there was no change of vapour storage in the canopy air space. Measurements of the above-canopy CO\(_2\) flux were used to confirm that photosynthesis from the forest canopy was negligible (i.e. values were positive indicating canopy respiration but no carbon uptake) and therefore above-canopy water flux observations could be inferred to be entirely associated with snow sublimation since transpiration was insignificant.

Atmospheric stability was calculated by dividing the Monin-Obukhov length, \(L \) (Monin and Obukhov, 1954) into the measurement height (\(z \)):

\[
L = -\frac{u' z}{\rho(T_c e_p(e, p) T_g)}
\]

\[
\rho = \frac{kzgH}{\langle u' \rangle}
\]

where \(u' \) is the friction velocity (m s\(^{-1}\)), \(\rho(T) \) is the air density as a function of air temperature (\(T \)) (Kelvin), \(e_p \) is the specific heat of dry air (kJ kg\(^{-1}\) K\(^{-1}\)), \(g \) is the vapour pressure, and barometric pressure, \(p \) (kPa), \(k \) is von Karman’s constant (0.41), \(g \) is acceleration due to gravity 9.81 (m s\(^{-2}\)), and \(H \) is the sensible heat flux (W m\(^{-2}\)). Negative \(z/L \) values correspond to unstable atmospheric conditions, positive values represent stable conditions, and values near zero are neutral. Changes in \(z \) due to snow pack fluctuations were not accounted for.

Turbulent flux estimates were evaluated by exploring total energy balance closure; turbulent fluxes should be equal to the available energy. A linear regression between the summation of the sensible (H) and latent heat fluxes and the difference between the net radiation \((R_n) \) and soil (G) heat flux was developed (Blanken et al., 1997; Blanken et al., 1998). The relationship between the 30-min above canopy \((\lambda E + H) \) and (\(R_n - G \)) values were positive indicating canopy respiration but no carbon uptake and therefore above-canopy water flux observations could be inferred to be entirely associated with snow sublimation since transpiration was insignificant.

Atmospheric stability was calculated by dividing the Monin-Obukhov length, \(L \) (Monin and Obukhov, 1954) into the measurement height (\(z \)):

\[
L = -\frac{u' z}{\rho(T_c e_p(e, p) T_g)}
\]

\[
\rho = \frac{kzgH}{\langle u' \rangle}
\]

where \(u' \) is the friction velocity (m s\(^{-1}\)), \(\rho(T) \) is the air density as a function of air temperature (\(T \)) (Kelvin), \(e_p \) is the specific heat of dry air (kJ kg\(^{-1}\) K\(^{-1}\)), \(g \) is the vapour pressure, and barometric pressure, \(p \) (kPa), \(k \) is von Karman’s constant (0.41), \(g \) is acceleration due to gravity 9.81 (m s\(^{-2}\)), and \(H \) is the sensible heat flux (W m\(^{-2}\)). Negative \(z/L \) values correspond to unstable atmospheric conditions, positive values represent stable conditions, and values near zero are neutral. Changes in \(z \) due to snow pack fluctuations were not accounted for.

Table I. Observations and instruments on the above- and below-canopy towers at the Niwot Ridge Forest, Ameriflux site

<table>
<thead>
<tr>
<th>Observation</th>
<th>Measurement height, meters</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative humidity, %</td>
<td>21.5</td>
<td>HMP-35D, Vaisala, Inc.</td>
</tr>
<tr>
<td>Air temperature, °C</td>
<td>21.5/1.7</td>
<td>CSAT-3, Campbell Scientific</td>
</tr>
<tr>
<td>Pressure, kpa</td>
<td>18</td>
<td>PT101B, Vaisala, Inc.</td>
</tr>
<tr>
<td>Net radiation, W m(^{-2})</td>
<td>26</td>
<td>4-component CNR-1, Kipp & Zonen</td>
</tr>
<tr>
<td>H(_2)O flux, mg m(^{-2}) s(^{-1})</td>
<td>21.5/1.7</td>
<td>IRGA-6260, Li-Cor</td>
</tr>
<tr>
<td>CO(_2) flux, mg m(^{-2}) s(^{-1})</td>
<td>21.5</td>
<td>IRGA-6260, Li-Cor</td>
</tr>
<tr>
<td>Wind speed, m s(^{-1})</td>
<td>21.5/1.7</td>
<td>Propvane-09 101, RM Young Inc.</td>
</tr>
<tr>
<td>Wind direction, degrees</td>
<td>21.5/1.7</td>
<td>Propvane-09 101, RM Young Inc.</td>
</tr>
<tr>
<td>Precipitation, mm</td>
<td>12</td>
<td>385-L, Met One</td>
</tr>
<tr>
<td>Soil heat flux, W m(^{-2})</td>
<td>-0.07 to -0.1</td>
<td>HFT-1, REBS</td>
</tr>
<tr>
<td>Soil moisture, % by volume</td>
<td>0–0.15</td>
<td>CS-615, Campbell Scientific</td>
</tr>
<tr>
<td>Soil temperature, °C</td>
<td>0–0.1</td>
<td>STP-1, REBS</td>
</tr>
</tbody>
</table>

Note: Above- and below-canopy Eddy covariance systems were located 21.5 and 1.7 m above the ground, respectively.

Copyright © 2007 John Wiley & Sons, Ltd. Hydro Process. 21, 0–0 (2007) DOI: 10.1002/hyp
was \(y = 0.77x + 13 \) (\(R^2 = 0.89; \ p < 0.01 \)) indicating adequate energy balance closure.

The sampling area, or flux footprint, was calculated using the method described by Schuepp et al. (Schuepp et al., 1990). The upwind distance that the sub-canopy flux measurements were most sensitive to occurred at a distance of 23, 27, and 29 m during typical daytime, neutral, and night time atmospheric stability conditions, respectively [Figure 2(a)]. The cumulative flux footprint, indicative of the upwind sampling area where 80% of the flux originated from, was 207, 243, and 263 m (daytime, neutral, and night time atmospheric stability conditions, respectively) [Figure 2(b)]. For the above-canopy turbulent flux measurements, greater than 90% originated from within 1200 m of the tower during downslope, westerly flow, common during the winter (~70% of the time) (Turnipseed et al., 2003).

Supporting sub-canopy measurements

Observations of soil, snow, and air temperature from three thermistor strings were used to develop relationships between snowpack temperature and rates of snowpack sublimation. In this regard, we investigated relationships between snowpack temperature gradients and diurnal variability in snow temperature, and rates of snowpack sublimation; snowpack temperature gradients control vapor pressure gradients in the snowpack and therefore the movement of water vapor from deeper in the snowpack towards the snowpack-atmosphere interface (McClung and Schaerer, 1993). The three thermistor strings were placed along a transect through a small clearing (~6 m in diameter) in the forest adjacent to the sub-canopy flux tower [Figure 1]. The thermistor strings were buried 20–30 cm below the soil before snow accumulation began and extended to 80, 180, and 200 cm above the ground surface; a guy wire tied to two trees at opposite ends of the clearing was used to tether the tops of the thermistor strings. During the study period the thermistor strings provided observations of soil, snow, and air temperature.

Eight water content reflectometers (Campbell Scientific model CS-615) were used to monitor soil moisture conditions surrounding the towers [Figure 1]. These observations were used to ensure that latent heat fluxes were primarily allocated to sublimation as opposed to snowmelt and to confirm that water from snowmelt had not entered the soil horizon which might trigger the onset of transpiration.

Snowpack properties

Ground observations of snow depth and snow density were derived from snow pits excavated weekly at two different locations (sub-canopy and within a small clearing adjacent to the flux towers). Within each snowpit, samples were taken at 10 cm vertical intervals over the entire snowpit depth using a 1000 cc stainless steel cutter. Snow density stratigraphy and bulk density and snow water equivalent were calculated from weighted-average density values and total snowpack depth.

Observations of precipitation were used to determine the mass input between the weekly snowpit observations, allowing us to approximate sublimation losses; changes in snow water equivalent between the weekly snowpit observations result from input of mass due to snowfall and reduction in mass due to sublimation. This provides a field based technique for evaluating sublimation estimates from the sub-canopy EC system. Precipitation observations were obtained at a height of 12 m from the above-canopy EC tower; an Alter gauge shield was used to improve precipitation gauge catch efficiency.

RESULTS

Soil temperature, moisture and soil heat flux were consistent with mid-winter conditions throughout the study period [Figure 3(a–c)]. Soil temperatures were within 0 to –2°C during the winter period, indicating sufficient insulation of the soil from cold winter air temperatures [Figure 3(a)]. Spring onset of snowmelt percolation occurred on DOY 100; soil moisture increased by 3-fold over the subsequent 20-d period [Figure 3(b)]. Throughout the majority of the study period (i.e. DOY 60–100),
soil heat flux was close to 0 W m$^{-2}$ [Figure 3(c)] and had a negligible impact on available energy and energy input to the snowpack. Temporal variability in soil temperature (coefficient of variation = 0.77) and soil heat flux (coefficient of variation = 2.6) was considerably greater than that of soil moisture (coefficient of variation = 0.11).

The diurnal energy fluxes, R_{n}, λE and H above and below the canopy are shown in Figure 4, together with precipitation. The CO$_2$ flux above the canopy is included to show that the forests had not yet transitioned from losing to gaining carbon, and therefore transpiration at this time was negligible. The majority of the above-canopy net radiation was partitioned as H above the canopy, and as λE beneath the canopy; above-canopy ratios of the daytime mean H/R_{n} and $\lambda E/R_{n}$ were 0.67 and 0.16, respectively. Beneath the canopy, these ratios were 0.02 (H/R_{n}) and 0.06 ($\lambda E/R_{n}$). Although the $\lambda E/R_{n}$ fraction was on average relatively small, large increases in λE with a subsequent decrease in H occurred several times in response to snowfall events.

Average sublimation rates over the study period were 0.70 and 0.41 mm d$^{-1}$ for intercepted snow and the sub-canopy snowpack, respectively. Both fluxes exhibited considerable variability (coefficient of variation = 0.66 for both total sublimation and snowpack sublimation), with intercepted snow sublimation rising after snowfall events [Figure 5(a)]. The ratio between sub-canopy snowpack sublimation and total sublimation averaged...
0.45 during the study period, increasing with time after
snowfall and approaching one during consecutive days
without snowfall; e.g. DOY 63–65 and DOY 87–93
[Figure 5(a)]. On average snowpack to total sublimation
ratios peaked 3 days after snowfall; timing to peak varied
considerably with snowfall magnitude.

A total of 34.8 mm of snow fell during the measure-
ment period [Figure 5(b)]. 38.5 mm of sublimation was
measured above the canopy over the same time period,
and 14.8 mm sublimated from the snowpack at the forest
floor. These correspond to sublimation to precipitation
ratios of 1.11 (total) and 0.43 (snowpack), with the total
ratio exceeding one due to sublimation of sub-canopy
snow that fell prior to the start of the measurements. Sub-
tracting the above-canopy \(T \) measurements from that
below the canopy [Figure 5(b)] reveals that 23.7 mm of
intercepted snow was sublimated from the canopy itself.
This corresponds to a sublimation to precipitation ratio
of 0.68.

Diurnal fluctuations in snowpack and near surface
air temperatures were notably different for time peri-
ods with high snowpack sublimation rates. For example,
only 0.1 mm of water sublimated from the snowpack
on DOY 60 whereas over 0.6 mm sublimated on DOY
64. At 60 cm above the ground surface snow tempera-
tures fluctuated by less than 5\(^\circ\) during DOY 60 and by
more than 10\(^\circ\) during DOY 64 [Figure 6(a,b)]. Similarly,
diurnal signatures in snow temperature were consider-
dably different on DOY 74 versus DOY 93, with little
variability in morning, evening and night-time snow tem-
peratures on DOY 74 versus a sinusoidal diurnal snow
temperature signature on DOY 93 [Figure 6(c,d)]; subli-
mation rates were 0.1 versus 0.6 \(\text{mm day}^{-1} \) for these two
days, respectively. Temperature fluctuations in the sur-
f ace layers, associated with cool nights and warm dry
days potentially drive significant water vapour movement
in the surface layers of the snowpack and enhance subli-
mation rates.

Estimates of snow depth on snow temperature profile
plots [Figure 6(a–d)] were derived from coincident pit
observations when available. In the case of DOY 60, the
majority of precipitation was recorded on DOY 59 and
early hours of DOY 60. Therefore, we assumed snow
depth was equal to that measured in the snowpit on DOY
64 as no precipitation or melt occurred between DOY 60
and 64. In the case of DOY 74, snow depth was difficult
to estimate as there was a large (12.45 mm) snowfall
event on DOY 73 [Figure 5(a)]. Thus, we assumed a
snow depth of 80 cm, corresponding to the observed snow depth from the snowpit on DOY 84. For DOY 93, we estimated snow depth based on the 2:00 temperature curve, which showed a distinct inflection point at the snow–atmosphere interface [Figure 6(d)]. Above- and below-canopy friction velocities were considerably greater for DOY 64 and 93 relative to that on DOY 60 and 74 [Figure 7]. Chinook winds, which enhance latent energy exchange between the land-surface and the atmosphere (Golding, 1978), were persistent on DOY 64 and 93. On these days, down-slope, westerly winds prevailed in combination with dry atmospheric conditions; above-canopy relative humidity averaged 29 and 38%, respectively. Over the 48 h prior to DOY 64 and 93 above-canopy air temperatures rose by approximately 20 °C; consistent with Chinook conditions (Barry, 1992). The combination of the relatively high air temperatures, dry conditions, and sufficient turbulence lead to enhanced near-surface gradients in specific humidity and sublimation. Conversely, on DOY 60 and 74, calm (<3 m s⁻¹) easterly winds prevailed and relative humidity averaged 80 and 85%, respectively. Unstable atmospheric conditions resulted in considerable sublimation of intercepted snow. For example, on DOY 62 measurement-height/Monin-Obukhov-length ratios dropped below −200 [Figure 8] and daily sublimation was 2.09 mm [Figure 5(a)]. Slight instabilities resulted in significant sublimation rates after snowfall events; measurement-height/Monin-Obukhov-length ratios on DOY 76 were between −3 and 0 yet sublimation of intercepted snow was 1.74 mm, only 17% lower than that of DOY 62. Precipitation magnitude is likely...
DISCUSSION

A variety of techniques have been developed to estimate sublimation from snowpacks and intercepted snow (Pomeroy et al., 1998; Montesi et al., 2004). It is especially challenging to capture the impact of vegetation on variability in turbulence and subsequent vapour fluxes. Results of previous work performed at the individual tree scale provide useful values to evaluate results of our new technique. Comparisons, however, must be made with caution as our technique integrates fluxes over the stand scale from two systems with different flux footprints; despite reasonably homogeneous stand characteristics. Tree-scale studies provide limited information at the stand scale due to introduction of uncertainty associated with vegetation properties. Further, quantitative comparison with previous studies is difficult given that meteorological conditions and site specific attributes can have dramatic impacts on the energy balance of forested environments—in particular, variability in vegetation structure (Sicart et al., 2004). Here we compare general observations of both snowpack and intercepted sublimation rates. Average mid-winter snowpack sublimation rates observed here (0.41 mm d⁻¹) were low relative to the highest of values found within the literature observed on the Canadian Prairies (1.2–1.8 mm d⁻¹ (Pomeroy and Essery, 1999)) and those observed in open mountainous locations (0.75 mm d⁻¹ (Fassnacht, 2004)); open sites are known to exhibit substantially greater sublimation rates (West, 1962). Our sublimation estimates were within 14% of values observed at the nearby Fraser Experimental Forest (e.g. 0.36 mm d⁻¹ (Schmidt et al., 1998)). The weekly snowpits excavated in a clearing adjacent to the flux towers used in this research indicated a total sublimation rate of 0.8 mm d⁻¹. While these estimates have inherent uncertainties, these on-site observations and comparisons with previous studies indicate that sublimation rates are not being overestimated using the sub-canopy EC system. In this regard, it is important to note that the average snowpack to total sublimation ratio of 0.45 [Figure 5(a)] represents the low-end of the contribution of sub-canopy sublimation to overall water loss; a significant finding given previous assumptions that sublimation losses in forested systems are primarily the result of intercepted snow sublimation (Montesi et al., 2004).

The assessment of sub-canopy sublimation estimates mentioned above must be considered when evaluating the EC estimates of intercepted snow sublimation as they are calculated from the residual of total sublimation and sub-canopy sublimation (Equation (2)). Sublimation rates of intercepted snow estimated using our EC approach (0.71 mm d⁻¹) compared favourably with previous works. For example, Parvainen and Pomeroy (2000) estimated intercepted snow sublimation from a boreal forest at 0.5 mm d⁻¹; at higher latitudes available energy is diminished due to higher solar zenith angles.

Montesi et al. (2004) explored the impact of elevation on sublimation rates and found that increased wind speeds, lower relative humidity and warmer air temperatures contributed to a 23% increase in sublimation rates at lower elevation. On average, Montesi’s estimates of intercepted snow sublimation were considerably lower than our estimates, with sublimation losses equivalent to 20–30% of total snow water equivalent during the 21 storms considered. These differences may be due to an underestimate in sub-canopy sublimation from the sub-canopy EC system used here. Differences may also be due to previously mentioned sources of underestimates in sublimation using the tree-weighting method of Montesi et al. (2004). Climatic differences may also be responsible for these discrepancies as the sites used by Montesi et al. (2004) were located on the windward side of the continental divide; our site is located on the leeward side of the divide where warm, dry chinook winds are more prevalent (Barry, 1992).

As previously found by Niu and Yang (2004), the relatively high above-canopy sensible heat fluxes lead to strong temperature differences between vegetation and the snow-surface, driving strong specific humidity gradients at the snow/atmosphere interface due to elevated snowpack sublimation rates [e.g. DOY 78–82 & 88–95, Figure 5(a)]. When snowfall occurred, above-canopy available energy was partitioned into latent heat fluxes [e.g. Figure 4, DOY 74], leading to relatively low total-sublimation to snowpack-sublimation ratios [DOY 74, Figure 5(a)]. This shift in partitioning of available energy is consistent with that found by Nakai et al. (1999). The results presented here explicitly indicate that sublimation losses from the sub-canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy.

CONCLUSIONS

Sub-canopy and above-canopy Eddy covariance systems indicated substantial losses of winter-season snow accumulation in the form of snowpack (0.41 mm d⁻¹) and intercepted snow (0.71 mm d⁻¹) sublimation. The partitioning between these over and under storey components of water loss was highly dependent on atmospheric conditions and near-surface conditions at and below the snow–atmosphere interface. High above-canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow-surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above-canopy latent heat fluxes, high within-canopy sublimation rates, and diminished sub-canopy snowpack sublimation. These results indicate that sublimation losses from the sub-canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate above- and below-canopy processes.
ACKNOWLEDGEMENTS

This research was supported by NASA grant #NNG04GQ74G and a visiting research fellowship awarded to the primary author at the Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder. Instrumentation infrastructure was developed in part through the Ameriflux network with support from the South Central Section of the National Institute for Global Environmental Change (NIGEC) through the US Department of Energy and through support of the National Science Foundation, Niwot Ridge LTER Project (DEB-0423662). Philip Jacobson provided technical support. Andrew Rossi is acknowledged for collecting snow pit data.

REFERENCES

QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT make your corrections on this query sheet.

Queries from the Copyeditor:
AQ1 We have provided the short title “Estimating sublimation of sub-canopy snow using eddy covariance systems” for the running head for this article. Please clarify whether it is appropriate.
AQ2 Please provide the full form journal title for this reference.
AQ3 Please provide the page range for this reference.
WILEY AUTHOR DISCOUNT CARD

As a highly valued contributor to Wiley's publications, we would like to show our appreciation to you by offering a unique 25% discount off the published price of any of our books.

To take advantage of this offer, all you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
West Sussex PO19 8SQ
UK

In the meantime, whenever you order books direct from us, simply quote promotional code S001W to take advantage of the 25% discount.

The newest and quickest way to order your books from us is via our new European website at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:
- Real-time SECURE on-line ordering
- The most up-to-date search functionality to make browsing the catalogue easier
- Dedicated Author resource centre
- E-mail a friend
- Easy to use navigation
- Regular special offers
- Sign up for subject orientated e-mail alerts

So take advantage of this great offer, return your completed form today to receive your discount card.

Yours sincerely,

Verity Leaver
E-marketing and Database Manager

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major reference works) for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
REGISTRATION FORM
FOR 25% BOOK DISCOUNT CARD

To enjoy your special discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Accounting</th>
<th>[]</th>
<th>Architecture</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Public</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Corporate</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>[]</td>
<td>Business/Management</td>
<td>[]</td>
</tr>
<tr>
<td>• Analytical</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Industrial/Safety</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Organic</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Inorganic</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Polymer</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Spectroscopy</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encyclopedia/Reference</td>
<td>[]</td>
<td>Computer Science</td>
<td>[]</td>
</tr>
<tr>
<td>• Business/Finance</td>
<td>[]</td>
<td>• Database/Data Warehouse</td>
<td>[]</td>
</tr>
<tr>
<td>• Life Sciences</td>
<td>[]</td>
<td>• Internet Business</td>
<td>[]</td>
</tr>
<tr>
<td>• Medical Sciences</td>
<td>[]</td>
<td>• Networking</td>
<td>[]</td>
</tr>
<tr>
<td>• Physical Sciences</td>
<td>[]</td>
<td>• Programming/Software Development</td>
<td>[]</td>
</tr>
<tr>
<td>• Technology</td>
<td>[]</td>
<td>• Object Technology</td>
<td>[]</td>
</tr>
<tr>
<td>Earth & Environmental Science</td>
<td>[]</td>
<td>Engineering</td>
<td>[]</td>
</tr>
<tr>
<td>Hospitality</td>
<td>[]</td>
<td>• Civil</td>
<td>[]</td>
</tr>
<tr>
<td>Genetics</td>
<td>[]</td>
<td>• Communications Technology</td>
<td>[]</td>
</tr>
<tr>
<td>• Bioinformatics/Computational Biology</td>
<td>[]</td>
<td>• Electronic</td>
<td>[]</td>
</tr>
<tr>
<td>• Proteomics</td>
<td>[]</td>
<td>• Environmental</td>
<td>[]</td>
</tr>
<tr>
<td>• Genomics</td>
<td>[]</td>
<td>• Industrial</td>
<td>[]</td>
</tr>
<tr>
<td>• Gene Mapping</td>
<td>[]</td>
<td>• Mechanical</td>
<td>[]</td>
</tr>
<tr>
<td>• Clinical Genetics</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medical Science	[]	Life Science	[]
	[]		
• Cardiovascular	[]	Engineering	[]
• Diabetes	[]	• Civil	[]
• Endocrinology	[]	• Communications Technology	[]
• Imaging	[]	• Electronic	[]
• Obstetrics/Gynaecology	[]	• Environmental	[]
• Oncology	[]	• Industrial	[]
• Pharmacology	[]	• Mechanical	[]
• Psychiatry	[]		
Non-Profit	[]	Psychology	[]
	[]	• Clinical	[]
	[]	• Forensic	[]
	[]	• Social & Personality	[]
	[]	• Health & Sport	[]
	[]	• Cognitive	[]
	[]	• Organizational	[]
	[]	• Developmental and Special Ed	[]
	[]	• Child Welfare	[]
	[]	• Self-Help	[]
	[]	Physics/Physical Science	[]

[] I confirm that I am a Wiley Author/Editor/Contributor/Editatorial Board Member of the following publications:

SIGNATURE: ..

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE AND NAME: (e.g. Mr, Mrs, Dr) ..

JOB TITLE: ..

DEPARTMENT: ..

COMPANY/INSTITUTION: ...

ADDRESS: ..

..

..

..

-town/city: ...

COUNTY/STATE: ..

COUNTRY: ...

POSTCODE/ZIP CODE: ...

DAYTIME TEL: ...

FAX: ...

E-MAIL: ...

YOUR PERSONAL DATA
We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post, e-mail or telephone of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.

[] Please tick the box if you do not wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post, fax or e-mail with details of titles and offers that may be of interest to you.

[] Please tick the box if you do not wish to receive this information.

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, UK.

E-MAIL ALERTING SERVICE
We offer an information service on our product ranges via e-mail. If you do not wish to receive information and offers from John Wiley companies worldwide via e-mail, please tick the box [].

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major reference works) for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

Ref: S001W