

Consequences of Nitrogen Deposition to Rocky Mountain National Park

Jill S. Baron, US Geological Survey

M.Hartman, D.S.Ojima, K. Nydick, H.M. Rueth B.Moraska Lafrancois, A.P. Wolfe, J. Botte, W.D. Bowman

Life is Short – Have Conclusions First!

- Nitrogen deposition is higher on the EAST side of Rocky Mountain National Park
- On the east side of the Front Range we have observed:
 - Changes in alpine tundra vegetation
 - Increased uptake of N by trees
 - Faster rates of soil nitrogen cycling
 - High year-round lake and stream N concentrations
 - Large changes in algal composition, beginning ca. 50 years ago

- Context: why care about nitrogen?
- Long-term research in and around Rocky Mountain National Park: how we know what we know
- The cascade of nitrogen deposition effects
- Research results

Why care about nitrogen?

- Nitrogen is necessary for life
- Most N on Earth is in a form unusable by living organisms
- The Green Revolution occurred largely due to synthetic N fertilizers
- Humans depend on fossil fuels for transportation and energy
- Thus, to sustain human life, we convert unusable N to reactive forms.

Nitrogen in the environment

- All of the reactive N created by fossil fuel combustion enters the environment.
- Ammonia from agriculture, especially animal feedlots, enters the environment
- Nitrogen is accumulating in the environment

More nitrogen is now fixed by human activities than by natural processes

Vitousek et al.

Nitrogen accumulation contributes to:

- Acid deposition
- Coastal dead zones
- Lake and river eutrophication
- Unnatural rates of forest growth
- Loss of biodiversity
- Smog
- Greenhouse effect
- Stratospheric ozone depletion

In the West, Ecological Effects are Found Adjacent to Urban and Agricultural Areas

High N waters

Colorado population and emissions trends

Nitrogen oxide emissions are very tightly related to population.

The Continental Divide separates <u>airsheds</u> in Rocky Mountain National Park

Spring/summer upslope winds move Front Range air to mountains

- Context: why care about nitrogen?
- Long-term research: how we know what we know
- The cascade of nitrogen deposition effects
- Research results

Foundations

- 23+ years of long-term monitoring in Loch Vale Watershed
- Experiments in field and lab to test cause and effect
- Modeling of ecosystem processes and "what-if" scenarios
- Spatial comparisons in Colorado and across western US

Long-term Program Objectives

- To understand and differentiate natural processes from unnatural, human-caused drivers of change
- To understand and quantify the effects of atmospheric deposition on high elevation ecosystems
- To share knowledge with managers so they are better informed

Our equipment is sturdy and Park Service Brown

Rain Gages

NADP Buckets

Soil Lysimeter

Stream Gage

Loch Vale Research has been widely reviewed and published

- 78 Journal Papers
- 26 Graduate Degrees
- 1 Loch Vale Book
- 1 Special Journal Section
- 9 Methods and QA Reports
- 154 Total Publications

- Context: why care about nitrogen?
- Long-term research: how we know what we know
- The cascade of nitrogen deposition effects
- Research results

Pathways and Effects of Excess Nitrogen Deposition

- Context: why care about nitrogen?
- Long-term research: how we know what we know
- The cascade of nitrogen deposition effects
- Research results

In the alpine nitrogen favors sedges and grasses over flowering plants

Niwot Ridge research shows sedges and grasses grow better with N than flowering plants in both experiments and surveys (Korb and Ranker 2001; Bowman et al. in review)

East-side forests are closer to N saturation

Six pairs of sites were similar in all characteristics except for N deposition amount

East side stands differed significantly from west side forests:

- higher needle and soil N,
- lower C:N ratios,
- higher soil N cycling rates

Experimental Fertilization of Small Forest Plots

Effects

- nitrate leached from soils => symptom of saturation
- base cations leached from soils => depletes soil buffering capacity and fertility

Rueth et al. 2001, Geick et al. in prep

As soils accumulate N, microbial activity increases

New England, USA McNulty et al. 1991

East-side lakes have higher N concentrations

Means (ueq/L)East 10.5 (5.0)West 6.6 (4.3)

n=44, p = 0.02

Baron et al. 2000

Lake Sediments serve as Proxies for Past Environmental Change

Wolfe et al., 2001, 2003, Baron et al. 1986

Diatoms are good indicators of environmental change

- Diatoms are algae: single-celled aquatic plants
- Species are very sensitive to water chemistry
- Glass (silica) cell walls do not decompose
- Each species has unique cell walls

Diatom Indicators of Disturbance Increased Abruptly in east-side lakes ca. 1950-1960

Lakes Have Changed More Since 1950 than Previous 14,000 Yrs

The <u>rate of change</u> in diatoms post-1950 is an order of magnitude greater than any change since Pleistocene.

The <u>abundance</u> of diatoms is 8-25x greater post-1950.

Caused by dominance of 2 disturbance species: *Asterionella formosa* and *Fragilaria crotonensis.* >40% of total diatoms since 1950

A. formosa and F. crotonensis are indicators of nutrient-rich waters

Experiments with Bioassays (Bottles), Mesocosms (Hula Hoops), and Lakes

Experiments: Productivity increased with added N and N+P. Communities changed to nutrient-loving algae.

Chlamydomonas sp.

Dinobryon sp.

N Additions = Eutrophication

increased productivity changed algal community

Summary of Research Results

Phew! We made it! Conclusions

- Nitrogen deposition is higher on the EAST side of Rocky Mountain National Park
- On the east side of the Front Range we have observed:
 - Changes in alpine tundra vegetation
 - Increased uptake of N by trees
 - Faster rates of soil nitrogen cycling
 - High year-round lake and stream N concentrations
 - Large changes in algal composition, beginning ca. 50 years ago
 - Acidification has not yet occurred

http://www.nrel.colostate.edu/projects/lvws/

Human Dominance of Earth System

Vitousek et al. 1997