Mountain Climate

-Extremes are the norm

- -Great environmental contrasts in short distances
- -Large variations in short time spans
- -High Complexity
- -Effects on climates of adjacent regions
- -Make their own weather

Four Major Climatic Controls

- 1. Altitude
- 2. Latitude
- 3. Topography
- 4. Continentality

Scales in Mt.Climate

	Micro-Scale	Local-Scale	Regional- Scale
Meteorology Phenomena	Turbulent Motion (gusts)	Slope and Valley winds	Thunderstorms
Landscape Elements	Rocks; Vegetation Clumps	Terrain Elements (slopes,valleys)	Mountain Ranges
Climatic Features	Snow patches	Radiational Contrasts, thermal belts	Monsoons

Altitude vs. Latitude

Given as separate climatic controls

• Is this really true?

Old saying: "Gaining elevation on a mountain is the same as gaining latitude"

Altitude vs. Latitude

The World

© CMAPQUEST.

ALTITUDE

4 Key Variables

Air pressure, density, and oxygen
 Atmospheric Water Vapor
 Temperature
 Solar Radiation

 Quality
 Quantity

Air pressure, Density, Oxygen

-Decrease with increasing altitude

-Exponential relationship

-5.5 km (~3.5mi), lose 1/2 atm pressure

-8 km (~5mi), lose 70% atm pressure

Atmospheric Water Vapor

- Decreases with increasing altitude
- Absolute humidity
 - The density of water in a particular volume of air.
- Specific humidity
 - The mass of water vapor per unit mass of air .

Temperature

- Decreases with increasing altitude
- Lower air density and water vapor
- Lapse rate
 - Moist: 6.5°C /1000m
 - Dry: 10°C/1000m
- Temperature Inversions

Temperature Inversions

- Colder air=more dense=sinking
- Ideal Conditions
 - Calm skies, no mixing
 - Clear skies
 - Enclosed valley

collects stagnant air

Salt Lake City, Utah

Solar Radiation (Quantity)

- Most extreme and variable radiation on earth
- Increased radiation with increased altitude
- Atmosphere acts as a filter because of:
 - Water vapor
 - Particulates
 - $-CO_2$
- These all absorb solar radiation, decreasing solar energy

Solar Radiation (Quality)

- shortwave radiation w/ altitude
- Ultraviolet (UV) Problems
- Considerably more UV at alpine that sea level
- Ozone traps UV
- One reason why sunburns so frequent at high elevation
- Plants must adapt to high UV

Back to scale.... Radiation/Temp

Local Aspects

Micro — Tanning areas

Extraterrestrial solar radiation on slopes

Solar Radiation: Aspect and Slope Angle

- Mid-latitude, northern hemisphere
- Winter: north-facing slopes little sun
 - South-facing slopes at about 30° receive almost as much solar radiation as during the summer
- Very large differences in solar radiation in mountains, depending on aspect and slope angle

Latitude

- Determines length of day and angle of incoming sunlight and, thus, amount of solar radiation received
 - In equatorial regions, day length & solar angle change little with season. Little seasonal variability, mostly diurnal changes.
 - In polar regions, the sun does not rise at all in winter. In the summer it never sets, although remaining low in sky. Big seasonal changes, small diurnal changes.
 - In mid-latitudes, seasonal and diurnal changes.
- Also determines site's exposure to latitudinal belts of high and low pressure
 - High pressure subsidence
 - Low pressure convection

Day length vs latitude

Whiteman (2000)

Temperature: Annual vs. Diurnal

PANGRANGO (7°S) OT AUG | SEP | OC | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL HR SUNRISE 10 12 12 16 16 SUNSET 18 8 20 -20 22 -22 24 JULIAUG I SEP I OCT I NOVI DECIJAN I FEB I MARIAPRIMAY I JUNI JUL a

Indonesia

Barry (1992)

Germany

Impacts of Latitude

- Net radiation (incoming outgoing) and temperature decrease as latitude increases
- Elevation of treeline/snowline decreases poleward
- Belt of alpine vegetation and permanent snow and ice are lower on mountains at high latitude versus the tropics

Snow lines and timberlines

Figure 1.1 Latitudinal cross-section of the highest summits, highest and lowest snow lines, and highest and lowest upper limits of timber line. (From Barry and Ives, 1974.)

"Gaining elevation on a mountain is the same as gaining latitude"

> True or false? Evidence?

