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[1] We model the spatial distribution of snow depth across a wind-dominated alpine basin
using a geostatistical approach with a complex variable mean. Snow depth surveys were
conducted at maximum accumulation from 1997 through 2003 in the 2.3 km2 Green Lakes
Valley watershed in Colorado. We model snow depth as a random function that can be
decomposed into a deterministic trend and a stochastic residual. Three snow depth trends
were considered, differing in how they model the effect of terrain parameters on snow
depth. The terrain parameters considered were elevation, slope, potential radiation, an
index of wind sheltering, and an index of wind drifting. When nonlinear interactions
between the terrain parameters were included and a multiyear data set was analyzed, all
five terrain parameters were found to be statistically significant in predicting snow depth,
yet only potential radiation and the index of wind sheltering were found to be statistically
significant for all individual years. Of the five terrain parameters considered, the index of
wind sheltering was found to have the greatest effect on predicted snow depth. The
methodology presented in this paper allows for the characterization of the spatial
correlation of model residuals for a variable mean model, incorporates the spatial
correlation into the optimization of the deterministic trend, and produces smooth estimate
maps that may extrapolate above and below measured values.
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1. Introduction

[2] One of the main challenges of snow hydrology lies in
attempting to infer basin-wide characteristics from point
measurements. Snow deposition is heterogeneous, with
generally greater amounts of snow falling at higher eleva-
tions [Seyfried and Wilcox, 1995]. Once on the ground, the
snow may be redistributed by wind [Kind, 1981] or ava-
lanching and sloughing [Elder et al., 1991; Blöschl et al.,
1991]. Furthermore, snowpack ablation is also nonuniform
because it is controlled by spatially and temporally varying
parameters such as temperature, wind, and radiation [Cline,
1997].
[3] Although snow property data such as snow water

equivalent (SWE) are often available in considerable tem-
poral detail from a single point (e.g., the U.S. Snowpack
Telemetry (SNOTEL) network [Serreze et al., 1999]), the
spatial resolution of snow property data is poor [Tarboton et
al., 2000]. Often, only a few point measurements are
available in the catchment of interest. Because of the
extreme spatial variability of snow properties, small samples
of these point data may not be representative of spatial

patterns and/or spatial averages [Elder et al., 1991]. The
spatial heterogeneity of the snowpack affects a variety of
processes including surface water input [Luce et al., 1998],
discharge [Hartman et al., 1999; Marks and Winstral,
2001], water chemistry [Williams and Melack, 1989;
Rohrbough et al., 2003], microbial cycling [Williams et
al., 2001], and hillslope erosion [Tarboton et al., 1991]. To
understand, quantify, and model runoff, it is essential to
account for spatial differences in snow accumulation
[Seyfried and Wilcox, 1995; Luce et al., 1998].
[4] Spatially distributed snow models differ in terms of

the degree of process representation [Tarboton et al., 2000].
Most models take an empirical approach, using statistical
relationships involving spatially variable parameters related
to terrain. For example, the SWETREE model [Elder et al.,
1995, 1998] uses binary decision trees to postpredict SWE
based upon radiation, elevation, slope, vegetation, and
substrate. König and Sturm [1998] used a rule-based ap-
proach based on developed pattern-topography relationships
derived from aerial photographs. Blöschl et al. [1991]
interpolated detailed SWE measurements from representa-
tive sites to a larger spatial extent based on elevation, slope,
and terrain curvature.
[5] The methodology described in this paper also takes an

empirical approach and incorporates spatially continuous
topographic parameters to distribute snow depth measure-
ments. The methodology allows for a complex spatially
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variable mean, and accounts for the spatial correlation of
data in the optimization of model parameters. We apply the
methodology to snow depth measurements taken from 1997
to 2003 in the Green Lakes Valley (GLV) of the Colorado
Front Range to evaluate terrain controls on the spatial
distribution of snow depth. Three deterministic models of
the snow depth trend are considered (constant, linear, and
nonlinear), which differ in how they model the effect of
topographic parameters on the predicted snow depth. The
topographic parameters considered are elevation, slope,
potential radiation, an index of wind sheltering, and an
index of wind snowdrift formation. For each of the models
of snow depth trend, we characterize the spatial correlation
of prediction errors using an exponential variogram model,
and we relate the parameters of the variogram model to an
independent measurement of the total winter precipitation
based on SNOTEL data. Moreover, we evaluate (1) the
predictive capability of various topographic parameters,
(2) the change in relative importance of each of these
parameters over time, (3) the importance of nonlinear inter-
actions between these parameters, and (4) the use of a single
point index of total precipitation (such as SNOTEL) to
improve models of the spatial distribution of snow depth.

2. Modeling Approach

[6] In the last decade, considerable effort has been
invested in developing methodologies that estimate basin-
wide characteristics of snow properties from a finite number
of point measurements. Although typically not presented as
such, many of the recent methodologies can be thought of as
treating the parameter of interest as a random function
[Matheron, 1973]. Random functions are commonly used in
geostatistics to describe a continuous function that varies in
space but has a complex behavior that cannot be de-
scribed by a deterministic function. The random function
can be decomposed into a deterministic and a stochastic
component

z xð Þ ¼ m xð Þ þ � xð Þ ð1Þ

where x is a vector of spatial location, z(x) is the random
function describing the snow property at the location x,
m(x) is the deterministic trend (or mean) component, and
�(x) is the stochastic residual component.
[7] A summary of recent modeling efforts to distribute

point measurements of snow properties, presented in the
framework of random functions, is shown in Table 1. The
simplest deterministic mean model is a spatially constant
mean, which was one of the models presented by Erxleben
et al. [2002] to spatially distribute snow depth. A more
flexible model is to divide the basin into discrete regions,
assuming a constant mean in each of the regions. The extent
of the regions can be determined by manual analysis of
aerial photographs [König and Sturm, 1998], Bayesian
classification [Elder et al., 1991] or by regression tree
techniques [Elder et al., 1998; Balk and Elder, 2000;
Winstral et al., 2002; Erxleben et al., 2002].
[8] Another technique is to model the mean as a linear

combination of spatially variable base functions

m xð Þ ¼
Xp
k¼1

fk xð Þbk ð2Þ

where p is the number of base functions, fk(x) are the
spatially variable base functions, and bk are the unknown
base function coefficients. We use the term ‘‘base function’’
to describe any continuous spatial function that is used as a
component of the mean model. The linear model is quite
general, and includes as specific cases both the constant
mean model (p = 1; f1(x) = 1) and discrete regions model
(fk(x) = d(x 2 Rk); where d( ) is the Kronecker delta and Rk;
k = 1 � � � p is the set of discrete regions). However, the true
flexibility of the linear model is that the base functions need
not be constant (or stepwise constant), but can be variable
across the region of interest. Previous efforts have used the
linear model (or models that can be rearranged to fit the
definition of the linear model) to model snow properties
with topographic parameters as base functions [Hosang and
Dettwiler, 1991; Carroll and Cressie, 1996; Stähli et al.,

Table 1. Selected Sources That Describe Methodologies for Spatially Distributing Snow Properties, Presented in the Framework of

Random Functionsa

Source Methodology Description

Deterministic Component Stochastic Component

Model Optimization Model Optimization

Elder et al. [1991] Bayesian classification discrete regions region average independent none
Blöschl et al. [1991] trend surface linear model not specified independent none
Hosang and Dettwiler [1991] residual kriging linear model OLS COVAR not specified
Carroll and Cressie [1996] modified elevation-detrended kriging linear model OLS COVAR WLS
König and Sturm [1998] aerial photograph mapping discrete regions region average independent none
Elder et al. [1998] binary regression tree discrete regions regression tree independent none
Balk and Elder [2000] binary regression tree + cokriging discrete regions regression tree XCOVAR OLS
Stähli et al. [2002] residual kriging linear model OLS COVAR visual
Winstral et al. [2002] binary regression tree discrete regions regression tree independent none
Erxleben et al. [2002] ordinary kriging constant kriging system COVAR AIC
Erxleben et al. [2002] trend surface linear model OLS independent none
Erxleben et al. [2002] modified residual cokriging linear model OLS XCOVAR AIC
Erxleben et al. [2002] binary regression tree discrete regions regression tree independent none
Erxleben et al. [2002] binary regression tree + kriging discrete regions regression tree COVAR AIC
This study kriging with a nonlinear trend model linear model kriging system COVAR RML

aOLS, ordinary least squares; COVAR, covariance model; XCOVAR, covariance and cross-covariance models; WLS, weighted least squares [Cressie,
1985]; AIC, Akaike information criterion [Webster and Oliver, 2001]; RML, restricted maximum likelihood [Kitanidis and Shen, 1996].
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2002; Erxleben et al., 2002] or nonlinear functions of
topographic parameters [Blöschl et al., 1991].
[9] Deterministic components may strive to represent the

physical processes, but they cannot provide perfect predic-
tions of snow distribution due to limited measurements,
measurement error, and model simplicity. The stochastic
component of the random function, �(x), describes the
residual differences between the model predictions and the
actual values. These residuals will likely be spatially corre-
lated, and this spatial correlation can be modeled to improve
the predictive ability of the random function. Two distinct
types of models have been used for the stochastic residual
component. The first type assumes that all residuals are
independent, which in geostatistics is known as the nugget
effect model. Adopting the linear model and assuming that
residuals are independent is equivalent to using multiple
linear regression. This model is implicitly chosen when the
residual values are not spatially distributed by geostatistical
techniques. The second type of model allows for the
residuals to be spatially correlated. This approach was
adopted by Hosang and Dettwiler [1991], Carroll and
Cressie [1996], Stähli et al. [2002], and Erxleben et al.
[2002] for distributing snow properties. Some researchers
have also incorporated the spatial correlation of snow depth
or SWE with a secondary variable (cross-correlation),
which is commonly known as cokriging. The cokriging
approach was adopted by Balk and Elder [2000], who used
net solar radiation as the secondary variable, and Erxleben
et al. [2002], who used elevation and slope as secondary
variables. In this paper we do not use a secondary variable
to characterize the spatial correlation of model residuals,
rather we use these variables directly in the development of
the deterministic model.
[10] In this paper we extend these prior methodologies

for spatially distributing snow properties. We adopt the

flexible linear model as our deterministic component, but
in addition to using simple topographic parameters as base
functions, we consider both linear and nonlinear functions
of topographic parameters. Furthermore, we optimize the
base function coefficients of the linear model with a
procedure that accounts for the spatial correlation of the
residuals, and we optimize the parameters of the stochas-
tic component using a procedure that allows for the use of
a variable mean model as the deterministic component.
For the stochastic component, we model the spatial
correlation of the residuals. This methodology recognizes
the importance of spatial correlation in the optimization of
both the deterministic and stochastic components, while
allowing for a variable mean model of snow distribution.
Finally, we apply this modeling approach to a multiyear
data set to limit the influence of any single year on the
optimal parameters. For brevity, we will refer to the
methodology described in this paper as the complex mean
geostatistical (CMG) methodology.

3. Site Description

[11] The CMG methodology was applied to snow depth
data collected in the GLV, an east facing headwater
catchment adjacent to the continental divide and located
entirely within the Arapaho-Roosevelt National Forest
(Figure 1). The GLV basin ranges in elevation from
3575 m at the outlet of Green Lake 4 to just above
4000 m, is 2.3 km2 in size, and appears typical of alpine
basins in the Colorado Front Range [Caine, 1995]. The
area has a continental climate, receiving about 1000 mm
of precipitation annually [Williams et al., 1996], 80% as
snow [Caine, 1995]. Land cover type has been mapped in the
field using expert knowledge and aerial photography. Ex-
posed bedrock makes up 29% of the basin area, talus 33%,

Figure 1. Map of the Green Lakes Valley and surrounding meteorological stations.
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vegetated soils 29%, the Arikaree glacier 4%, and there are
two lakes in the basin (5%).
[12] Niwot Ridge, an alpine tundra ecosystem, lies along

the northern boundary of the GLV and extends eastward
from the Continental Divide. Niwot Ridge is an UNESCO
Biosphere Reserve and a Long-Term Ecological Research
(LTER) network site. Several research stations are located
on Niwot Ridge, including the D-1 meteorological station
where climate data have been collected since the early
1950s [Greenland, 1989]. The D-1 meteorological station
is located at an elevation of 3750 m (Figure 1). The Natural
Resources Conservation Service (NRCS) operates an auto-
mated SNOTEL site (University Camp) down valley of
the GLV in a subalpine forest ecosystem at an elevation of
3160 m, about 6 km from the outlet of Green Lake 4.

4. Field Methods

4.1. Snow Survey

[13] Snow surveys were performed in the GLV water-
shed from 1997 through 2003, following the protocol of
Elder et al. [1991]. The surveys attempted to sample
during maximum accumulation (generally early to mid-
May) over a period of three days. Summary statistics are
presented in Table 2. Snow depths were measured using
hand probes similar to the protocol of Balk and Elder
[2000], but only one depth measurement was taken at each
location. The spatial density of snow depth measurements
was typically 50 m between sample points in areas that
were partially to predominately snow covered. In 2003,
additional snow depth measurements were collected every
5 m over a limited area to characterize variability over
shorter distances. The spatial extent of field measurements
varied from year to year as a function of the number and
experience of field personnel, weather conditions and
safety considerations. For a small number of measurements
(fewer than 12 per year), the snow depth exceeded the
length of the hand probes carried by the surveyor. In these
cases, the probed depth was recorded along with a
comment indicating that the snow depth exceeded the
measurement.
[14] Each data point was registered using a Global

Positioning System (GPS), except for the 1997 measure-
ment locations that were estimated from a 1:24,000
topographic map. Trimble Pro XR Integrated GPS/Beacon
Receivers were used exclusively from 1998 through 2000,
and were supplemented by handheld Garmin GPS-III Plus

and Garmin eTrex Legend GPS receivers from 2001
through 2003.

4.2. Digital Elevation Model

[15] A 10 m digital elevation model (DEM) was gener-
ated for the GLV area from 1:12,000 scale black and white,
1:24,000 scale color infrared (CIR), and 1:40,000 scale CIR
aerial photographs [Williams et al., 1999]. Elevation and
slope were derived from the DEM for all snow depth
measurement locations, and will be denoted by the variables
h and q in the following analyses. Elevation values range
from 3567 to 4087 m with a mean value of 3747 m and
slope values range from 0� to 66� with a mean value of 28�
(Table 3).

4.3. Radiation Index

[16] An index of potential incoming radiation was con-
structed by modeling the spatial distribution over the basin
using the TOPORAD algorithm [Dozier, 1980], which
accounts for changes in shortwave irradiance caused by
local solar zenith angle, terrain shading, and terrain reflec-
tance. We followed the protocol of Elder et al. [1991],
which constructed an index based on the summation of
clear-sky irradiance on the fifteenth day of each month
during the snow accumulation season (November–May)
and which has been applied previously to the GLV by
Winstral et al. [2002]. The radiation index is denoted by F
and ranges from 11 to 265 W/m2 with a mean value of
160 W/m2 (Table 3).

4.4. Wind Shelter Indices

[17] The variability in topographic wind sheltering was
quantified using two parameters developed by Winstral et
al. [2002] for the GLV. Calculation of these parameters
requires a DEM and knowledge of the dominant wind
direction.

Table 2. Summary Statistics of the Maximum Recorded SWE Value at the University Camp SNOTEL Station

(U-Camp) Between 15 November and 15 May and the Yearly GLV Snow Surveys

Sample Year
U-Camp

SWE Index, mm

Snow Depth Survey Summary

Number of
Samples

Mean
Depth, cm

Standard
Deviation, cm

Coefficient
of Variation

1997 775 193 256 187 0.73
1998 495 370 242 167 0.69
1999 564 532 221 194 0.88
2000 417 655 213 187 0.88
2001 409 511 188 139 0.74
2002 234 447 123 134 1.09
2003 546 527 222 167 0.75

Table 3. Summary Statistics for Topographic Parameters Modeled

Throughout the GLV

Terrain
Parameter

Minimum
Value

Maximum
Value

Mean
Value

Standard
Deviation

Elevation h, m 3567 4087 3747 111
Slope q, deg 0 66 28 14
Potential radiation F, W/m2 11 265 160 68
Wind shelter index Sx, deg �33 64 13 14
Wind drift index D0 0.00 1.00 0.14 0.35
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[18] The first index, denoted by the variable Sx, describes
the maximum upwind slope (in degrees) relative to each
location on the DEM.

Sx ¼ max tan�1 h xið Þ � h x0ð Þ
xi � x0j j

� �
; xi 2 U100

� �
ð3Þ

where x0 is a vector of the horizontal coordinates of the cell
of interest, U100 is the set of cells within 100 m in the
upwind direction, xi is a cell within U100, and jxi � x0j is the
separation distance. Increasingly negative Sx values corre-
spond to greater constrictions on the approaching wind
flow, yielding higher wind speeds. Increasingly positive Sx
values correspond to a greater degree of shelter and lower
wind speeds. The index Sx ranges from �33� to 64� in the
GLV, with a mean value of 13� (Table 3).
[19] The second index, denoted by the variable D0, is

used to describe whether or not a location is expected to
experience lee slope deposition [Winstral et al., 2002]. This
binary variable indicates expected drift formation (D0 = 1)
or no drift formation (D0 = 0). The mean value of D0

throughout the GLV is 0.14 (Table 3).

4.5. SNOTEL SWE Measurements

[20] The Natural Resources Conservation Service
(NRCS) operates a snow pillow sensor at the University
Camp SNOTEL site. Table 2 summarizes the maximum
SWE during the snow accumulation season at the SNOTEL
site obtained from the USDA NRCS Web site (http://
www.wcc.nrcs.usda.gov/).

5. Data Analysis

[21] In this section we describe the complex mean geo-
statistical (CMG) methodology in terms of the model form
of the deterministic and stochastic components of the
random function, the optimization of the component param-
eters, and the test for statistical significance of base func-
tions used in the deterministic model.
[22] We will use matrix notation to present the method,

which is a concise method of expressing multiple algebraic
equations, and is useful for describing regression analysis
[Draper and Smith, 1998] and geostatistical methods
[Cressie, 1993]. Matrices will be denoted by bold uppercase
letters, while vectors will be denoted by bold lowercase
letters. Let n be the number of measurement locations, m be
the number of locations where estimates are to be made, and
p be the number of base functions with unknown coeffi-
cients in the deterministic component. The subscript y is
used to denote measurement locations while the subscript s
is used to denote the estimate locations. AT denotes the
transpose of matrix A, while A�1 denotes the inverse of
matrix A.

5.1. Model Form

[23] We model snow depth as a random function, which
can be decomposed into a deterministic and a stochastic
component (equation (1)). The random function can be
rewritten in matrix notation for the measurement locations as

zy ¼ My þ ����y ð4Þ

where zy is a n	 1 vector ofmeasurement values,My is a n	 1
vector of the trend at the measurement locations, and ����y is

a n 	 1 vector of residuals at the measurement locations.
Because there are two components, an improvement in the
deterministic model reduces the magnitude of the stochas-
tic component, allowing for improved spatial predictions.
[24] For the deterministic model, we adopt the linear

model (equation (2)). In matrix notation, the spatially
variable mean can be expressed as

My¼ XyB ð5Þ

where Xy is an n 	 p matrix constructed such that Xik is the
kth base function evaluated at the ith measurement location,
and B is a p 	 1 vector of base function coefficients. In
order for estimates to be made, the base functions must be
known at every measurement and estimate location.
Because random functions were first developed in the
mining industry, where knowledge of secondary parameters
is often limited, base functions have typically been limited
to variables that describe the spatial location (i.e.,
coordinates). This allows for a spatial trend to be estimated
over the region analyzed, but causes the mean model to be
site specific. In contrast, for surface hydrology applications
there is a wealth of spatially distributed parameters such as
land cover maps, DEMs, and remote sensing data that can
be used as base functions of the mean trend model.
[25] From the available spatially distributed data, we

chose base functions that may be good predictors of snow
depth. We evaluated base functions composed of combina-
tions of five common topographic parameters: elevation,
slope, potential radiation, an index of wind sheltering, and
an index of wind drift formation. For a given set of base
functions, the corresponding set of coefficients were esti-
mated using kriging techniques. Because we build models
that are based on commonly available parameters, the
deterministic models will potentially be applicable to other
sites that undergo similar deposition, redistribution, and
ablation processes.
[26] It is important to note that although the deterministic

component is linear with respect to the base functions, the
base functions can be either linear or nonlinear functions of
the topographic parameters. Therefore models of the trend
(equation (2)) can be nonlinear with respect to topographic
parameters.
[27] The second component of the random function, �(x),

seeks to describe the variation in the modeled variable that
is not be described by the deterministic component. When
analyzing environmental variables such as snow depth, the
residual component values are often spatially correlated. We
take advantage of this observation by modeling the residual
component as a second-order stationary function, which
means that it has a constant mean and the two-point
covariance depends only on the distance between the two
locations [Cressie, 1993]. Methodologies that do not model
the spatial correlation of the residual component, such as
linear regression techniques, may lead to inaccurate results
due to their incorrect assumption of independent residuals.
[28] We characterize the spatial variation of the residuals

with an isotropic variogram function

g hð Þ ¼ 1

2
E � xð Þ � � x0ð Þð Þ2
h i

ð6Þ

where h is the scalar spatial separation distance between
points x and x0, g(h) is the semivariance for points separated
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by distance h, and E[ ] denotes the expected value operator.
We choose to model the variogram function with an
exponential model

g hð Þ ¼ s2 1� exp � h

L

� �� �
ð7Þ

where s2 is the sill variance at large separation distances,
and L is the length scale parameter. The range of influence
of the exponential function is approximately 3L [Kitanidis,
1997a]. The corresponding covariance function is

R hð Þ ¼ s2 exp � h

L

� �� �
ð8Þ

where R(h) is the covariance at the separation distance h.
[29] The exponential model was chosen because it is a

simple stationary model and has previously been used to
characterize the spatial variation of snow parameters
[Blöschl, 1999; Carroll and Cressie, 1997]. Although
anisotropy and nugget effects may be incorporated into
models of spatial correlation, in this study these model
options were not implemented to avoid increased model
complexity.
[30] It is important to emphasize that the variogram

model is used to characterize the spatial correlation of the
residual differences between the snow depth measurements
and the deterministic trend, not the spatial correlation of the
measurements. The variogram of the residuals and vario-
gram of the measurements will be the same when a constant
mean is used as the deterministic model. Additionally,
statistical inference is based on the assumption of statio-
narity of the residuals, which is a more relaxed assumption
than stationarity of the random function.
[31] The covariance function is used to construct covari-

ance matrices, which are used to describe the expected
variability between two sets of measurements. A covariance
matrix is constructed such that the element Qij is the
modeled covariance (equation (8)) between the residuals
at locations i and j. Qyy is a n 	 n covariance matrix
between the measurement locations, Qys is an n 	 m
covariance matrix between the measurement and estimate
locations, and Qss is an m 	 m covariance matrix between
the estimate locations.
[32] When a multiyear data set was considered, the

covariance matrix of the measurements was constructed
by assuming that the covariance between measurements
from different years is zero. Possible covariance between
measurements across years was not modeled, due to com-
putational limitations. Because of this assumption, the
resulting covariance matrix for the multiyear data set is
block diagonal

Qyy ¼

Q1 0½ � � � � 0½ �

0½ � Q2 � � � 0½ �

..

. ..
. . .

. ..
.

0½ � 0½ � � � � QG

2
666666664

3
777777775

ð9Þ

where Qi, i = 1 � � � G are the covariance matrices of the
individual years and G is the number of individual
years.

5.2. Parameter Estimation

5.2.1. Stochastic Component
[33] Optimal parameters for the exponential covariance

model (equation (8)) and the corresponding variogram
model (equation (7)) are obtained using the restricted
maximum likelihood (RML) method [Kitanidis and Shen,
1996]. The optimal parameters are obtained by minimizing
the negative logarithm of the restricted likelihood of the
data

Rg ¼
n� p

2
ln 2pð Þ þ 1

2
ln Qyy

�� ��þ 1

2
ln XT

yQ
�1
yy Xy

��� ���
þ 1

2
zTy Q�1

yy �Q�1
yy Xy XTQ�1

yy Xy

 ��1

XT
yQ

�1
yy

� �
zy ð10Þ

where j j denotes the matrix determinant.
5.2.2. Deterministic Component
[34] Coefficients for the base functions of the mean

model were estimated using a kriging system of equations.
The kriging framework for a variable mean model can be
thought of as a generalized version of multiple linear
regression that accounts for spatial correlation. We use the
function estimate form of kriging [Kitanidis, 1997a], also
known as dual kriging [Cressie, 1993], which models the
estimated value as a weighted linear combination of covari-
ance functions. Although both the traditional and the
function estimate forms of kriging produce the same
estimates, we chose to use the function estimate form of
kriging because the base function coefficients are solved for
directly. In function estimate kriging, the unbiased, mini-
mum variance estimate is given by

ẑs ¼ XsB̂þQ
T

ysX̂ ð11Þ

where Xs is an m 	 p matrix constructed such that Xik is the
kth base function evaluated at the ith estimate location, B̂ is
a p 	 1 vector of base function coefficient estimates, and X̂

is a n 	 1 vector of covariance weights. The covariance
weights and the base function coefficients are estimated by
solving the following kriging system

Qyy Xy

XT
y 0½ �

2
4

3
5 X̂

B̂

2
4

3
5 ¼

zy

0½ �

2
4

3
5 ð12Þ

where [0] denotes a matrix of zero values [Kitanidis,
1997a].
5.2.3. Significance Testing
[35] The predictive significance of a base function can

be quantified by comparing a trend model that contains
the base function to be tested (the ‘‘augmented’’ model)
to a model that does not contain the base function to be
tested, but is otherwise identical (the ‘‘compact’’ model).
The two models are compared using the variance ratio
test. Key equations of the test are summarized below, but
the reader is referred to Kitanidis [1997b] for a complete
description.
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[36] The error of the model fit is quantified by the sum of
squared orthonormal (uncorrelated) residuals. The error
statistic for the compact model is given by

WSS ¼ zTy Q�1
yy �Q�1

yy Xy XT
yQ

�1
yy Xy

 ��1

XT
y Q

�1
yy

� �
zy ð13Þ

where WSS is the weighted sum of squares for the compact
model, and Xy is the n	 p drift matrix of the compact model
or the n 	 (p + 1) drift matrix of the augmented model.
The normalized relative difference of the model errors is
given by

v ¼ WSSC �WSSA

WSSA

� �
n� pþ 1ð Þð Þ ð14Þ

where the subscripts A and C denote the augmented and
compact models respectively. If the model residuals are
normally distributed, critical values of the normalized
relative difference can be selected from the well-defined
F distribution [Judd and McClelland, 1989].
[37] The variance ratio test is a generalization of the

significance test for uncorrelated residuals [Judd and
McClelland, 1989], which is commonly used in multiple
linear regression. For spatially uncorrelated residuals, the
two tests are equivalent.

6. Results: Field

[38] The annual maximum SWE recorded at the Univer-
sity Camp SNOTEL site between 1997 and 2003 had a
threefold range, from a low of 234 mm in 2002 to a high of
775 mm in 1997 (Table 2).
[39] Daily mean wind speed and direction data during the

winter months were recorded by an anemometer located 9 m
above the ground surface at the D-1 station. The dominant
wintertime wind direction measured between 1997 and
2001 is consistent from year to year (Figure 2). High wind
speeds that are most likely to redistribute snow generally
fall between 255� and 275�, which matches the dominant
wind direction reported by Winstral et al. [2002] of 265�
(west). As a result, the Sx and D0 parameters developed by

Winstral et al. [2002] can be used in the analysis of each of
the data sets considered.
[40] The number of snow depth measurements ranged

from a low of 193 measurements in 1997 to a high of 655
measurements in 2000 (Table 2). Mean measured snow
depths reflected the same high and low years as the
SNOTEL maximum SWE measurements, with the greatest
mean snow depth in 1997 at 256 cm and the lowest mean
snow depth measured in 2002 at 123 cm. The coefficient of
variation for snow depth measurements in a yearly data set
ranged from 0.69 to 1.09, which is higher than the range of
0.33 to 0.63 reported by Elder et al. [1991] for three snow
depth surveys near maximum accumulation (1986–1988) of
the Emerald Lake basin in the Sierra Nevada.

7. Results: Data Analysis

[41] Three trend models were selected to model snow
depth. The models differ in how depth is modeled with
respect to the topographic parameters. For simplicity, we
will refer to the models as the ‘‘constant’’, ‘‘linear’’, and
‘‘nonlinear’’ trend models. The trend models are used to
analyze both individual year data sets and a multiyear data
set that incorporates six years of measurements (1998–
2003). Snow depth measurements collected during 1997
were not incorporated into the multiyear data set because
inconsistencies were observed, which were attributed to
data registration errors associated with map-based estima-
tion of field locations. Subsequent surveys used GPS units
to measure locations.

7.1. Constant Trend Model

[42] The constant trend model treats the mean as a
constant unknown value, which is commonly referred to
as ordinary kriging [Cressie, 1993]. For this model, no
topographic information is used in the interpolation of snow
depth. For a single year data set, the constant trend model is

m x; tð Þ ¼ b1;t ð15Þ

where b1,t is the base function coefficient for the year t.
[43] The estimated base function coefficients for the

constant trend model (Table 4) correspond to the esti-
mated mean snow depth in the GLV for each year, when
terrain effects are not considered. These coefficients
differ from the mean of the snow depth measurements
(Table 2) because the spatial correlation of the measure-
ments was incorporated into the estimation of the model
coefficients.
[44] The optimized parameters of the residual variograms

are presented in Table 5 and compared in Figure 3a. The
residuals for this model are the difference between the
measurements and a single estimated snow depth, which
is assumed to represent the entire GLV. The sill variance
parameter for the yearly data sets ranges from 2.02 to
3.84 m2 and the exponential length parameter ranges from
34 to 82 m for different years. The sill variance parameter
for the multiyear data set is 2.94 m2 and the exponential
length parameter is 47 m.

7.2. Linear Trend Model

[45] The linear trend model is linear with respect to the
topographic parameters. The model allows for a variable

Figure 2. Daily mean wind direction and mean wind
speed at the D-1 meteorological station for the 1997–2001
winter seasons (15 November to 15 May).
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trend because the base functions may be spatially variable,
but requires the effect of a topographic parameter to be
constant across the entire region. For each snow depth data
set, a linear trend model was independently constructed by
starting with the constant trend model (equation (15)) and
sequentially adding additional topographic parameter base
functions that were determined to be statistically significant.
The order in which the base functions were added was
based on knowledge of the physical relationships between
the topographic parameters and snow depth. For each data
set model, base functions were added if they were statisti-
cally significant at the 0.05 level, using the testing proce-
dure described in section 5.2.3. The general form of the
linear trend model is

m x; tð Þ ¼ b1;t þ b2h
0 xð Þ þ b3q

0 xð Þ þ b4F
0 xð Þ þ b5S

0
x xð Þ þ b6D

0
0 xð Þ
ð16Þ

although one or more of the base functions were not found
to be significant for each data set (Table 4). The prime
designates that the topographic variable has been mean
deviated by the mean value of the parameter throughout the
entire GLV, which aids in the interpretation of the base
function coefficients. For example, mean deviating the h
parameter causes b1,t to represent the best estimate of snow
depth at the mean elevation of the GLV, rather than at sea
level. Because all topographic parameters were mean
deviated, b1,t represents the estimated snow depth for the
mean values of h, q, F, Sx, and D0 within the GLV. The

remaining base function coefficients (b2 to b6) represent the
effect of a topographic parameter on the estimated snow
depth, in the context of the full model. For example, b2
represents the effect of a unit increase in elevation on the
estimated snow depth, for a model that also incorporates the
effect of slope, potential radiation, wind sheltering, and an
index of wind drift formation. For the multiyear data set, the
mean snow depth value for each of the individual years
(b1,t) is allowed to vary between years while the effect of the
topographic parameters on the snow depth is held constant
across years.

Table 4. Optimal Base Function Coefficients for the Constant, Linear, and Nonlinear Trend Models for the Individual Years and the

Multiyear (1998–2003) Data Seta

Coefficient Base Function 1997 1998 1999 2000 2001 2002 2003 1998–2003

Constant Trend Model
b1, cm 1 251 229 221 199 182 111 216

Linear Trend Model (Variable Mean Model With Linear Base Functions)
b1, cm 1 251 222 196 182 174 145 222
b2, cm/m h0 �0.530 �0.18
b3, cm/deg q0 3.0
b4, cm/(W/m2) F0 �0.591
b5, cm/deg Sx

0 9.11 8.46 7.78 6.65 3.85 4.06 6.88
b6, cm D0

0 124 115 62.34

Nonlinear Trend Model (Variable Mean Model With Nonlinear Base Functions)
b1, cm 1 251 201 190 189 177 115 226
b2, cm/m h0 0.32 �0.60 0.03 �0.15 �0.27 �0.17
b3, cm/deg q0 1.71 1.47 3.18 0.73
b4, cm/(W/m2) F0 �0.588 �0.133 0.256 �0.420 �0.224 �0.498 �0.039 �0.195
b5, cm/deg Sx

0 4.49 7.64 6.98 5.88 6.67 4.50 1.73 5.09
b6, cm D0

0 30 176 96 18 121 124 103
b7, cm/deg2 (q0)2 0.182 0.144 0.055
b8, cm/deg2 (Sx

0)2 �0.206 0.178 0.096
b9, cm/(m deg) h0 * q0 �0.021
b10, cm/(W/m) h0 * F0 �0.0087 �0.0076 �0.0028
b11, cm/(m deg) h0 * Sx

0 �0.021 �0.039 �0.018
b12, cm/deg/(W/m2) q0 * F0 �0.040
b13, cm/deg2 q0 * Sx

0 �0.189 0.107 �0.077
b14, cm/deg q0 * D0

0 10.2
b15, cm/deg/(W/m2) F0 * Sx

0 0.063 0.043 0.060 0.034 0.023 0.047 0.032
b16, cm/(W/m2) F0 * D0

0 �1.28 �1.84 �1.03 �1.29 �1.58 �1.49 �1.43

aCoefficients are listed for base functions that are statistically significant at the 0.05 level (see section 5.2.3). Base functions that are not statistically
significant by themselves but are part of a significant higher-order base function are also listed and are in bold. The first base function coefficients (b1) for
the multiyear data set are not listed because a distinct coefficient exists for each year (see equation (17)).

Table 5. Optimal Variogram Parameters for the Constant, Linear,

and Nonlinear Trend Models for the Individual Years and the

Multiyear Data Set (1998–2003)a

Data Set

Sill Variance, m2 Length Parameter, m

Constant
Trend

Linear
Trend

Nonlinear
Trend

Constant
Trend

Linear
Trend

Nonlinear
Trend

1997 3.47 3.47 2.95 82 82 76
1998 2.97 2.13 1.87 71 53 44
1999 3.84 2.73 2.63 62 41 43
2000 3.62 2.78 2.36 42 30 21
2001 2.05 1.58 1.49 40 28 24
2002 2.02 0.94 0.77 51 13 4
2003 2.77 2.63 2.27 34 32 25
1998–2003 2.94 2.27 1.99 47 34 26

aThe correlation range is approximately 3 times the length parameter for
the exponential variogram.
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[46] The estimated base function coefficients for the
linear trend model are shown in Table 4. Each of the
topographic parameters was found to be statistically signif-
icant for some of the individual years, but none was
significant for all of the individual years.
[47] The estimated parameters of the residual variograms

for the linear trend model are presented in Table 5 and
compared in Figure 3b. The sill variance parameter ranges
from 0.94 to 3.47 m2 for the individual year data sets and is
2.27 m2 for the 1998–2003 data set. The sill variance
parameters are less than or equal to the corresponding sill
variances of the constant trend model, which suggests that
the linear model has greater estimation accuracy relative to
the constant trend model. The exponential length parameter
ranges from 13 to 82 m for the individual year data sets and
is 34 m for the 1998–2003 data set. The exponential length
parameters are also consistently smaller than the
corresponding length parameters of the constant trend
model, which indicates that the linear trend model does a
better job of explaining the spatial correlation of snow depth
measurements relative to the constant trend model.
[48] Two of the yearly data sets stand out. For 1997, none

of the topographic parameters were found to be statistically
significant. This is likely due to the imprecise location
estimates, as discussed earlier. The 2002 data set is also
unique because it was the driest winter. All of the topo-
graphic parameters except elevation were found to be
significant for the 2002 data set, an indication that terrain
may influence snow distribution more strongly during dry
winters.

7.3. Nonlinear Trend Model

[49] The nonlinear trend model is nonlinear with respect to
individual topographic parameters. Similar to the linear trend
model, this model allows for a variable trend, but unlike the
linear trend model, the effect of a topographic parameter on
snow depth may vary for different values of that topographic
parameter (parabolic behavior) or for different values of
another topographic parameter (interactions).
[50] For each data set a nonlinear trend model was

independently constructed by starting with the constant
trend model (equation (15)) and adding additional base

functions that were statistically significant at the 0.05 level.
All topographic parameters plus all possible two-term
combinations of the parameters were considered as base
functions. This results in 20 potential base functions: one
constant, five individual topographic parameters, four
squared topographic parameters, and ten base functions that
were combinations of two different topographic parameters.
Note that only four squared topographic parameter base
functions were considered because D0 = D0

2.
[51] The general form of the nonlinear trend model is

composed of base functions that were significant for one or
more of the data sets considered is

m x; tð Þ ¼ b1;t þ b2h
0 xð Þ þ b3q

0 xð Þ

þ b4F
0 xð Þ þ b5S

0
x xð Þ þ b6D

0
0 xð Þ

þ b7 q0ð Þ2 xð Þ þ b8 S0x
� �2

xð Þ

þ b9h
0 xð Þq0 xð Þ þ b10h

0 xð ÞF0 xð Þ

þ b11h
0 xð ÞS0x xð Þ þ b12q

0 xð ÞF0 xð Þ

þ b13q
0 xð ÞS0x xð Þ þ b14q

0 xð ÞS0x xð Þ

þ b15F
0 xð ÞS0x xð Þ þ b16F

0 xð ÞD0
0 xð Þ

ð17Þ

[52] Individual topographic parameters were added as
base functions if they were part of a significant nonlinear
base function, regardless of whether the individual topo-
graphic parameter was significant by itself. Equation (17)
has 16 base functions because four of the 20 potential base
functions were not found to be significant for any of the
data sets considered. The optimal base function coefficients
for the nonlinear trend model are listed in Table 4. In no
case were all of the base functions coefficients of the
general model (equation (17)) found to be significant for a
single data set.
[53] Because of the addition of the nonlinear base func-

tions, many of the interpretations of the base function
coefficients differ from their meanings in the linear trend
model. The base function coefficients are easier to interpret

Figure 3. Optimized exponential variograms of the residuals of modeled snow depth for the individual
year and multiyear data sets for the (a) constant, (b) linear, and (c) nonlinear trend models.
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by rearranging equation (17) into a ‘‘simple’’ linear rela-
tionship [Judd and McClelland, 1989] between snow depth
and a topographic parameter. For example, the simple
relationship between h and snow depth can be illustrated
by the following equation

m x; tð Þ ¼

b2

þb9F
0 xð Þ

þb10S0x xð Þ

0
BBBB@

1
CCCCAh0 xð Þ þ

b1;t

þb3q
0 xð Þ

þb4F
0 xð Þ

þb5S0x xð Þ

þb6D0
0 xð Þ

þb7 q0ð Þ2 xð Þ

þb8 S0x
� �2

xð Þ

þb11q
0 xð ÞS0x xð Þ

þb12F
0 xð ÞS0x xð Þ

þb13F
0 xð ÞD0

0 xð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð18Þ

From equation (18) it can be seen that b2 represents the
effect of h on snow depth for the mean values of F and Sx
(i.e., F0 = Sx

0 = 0) in the context of a model that also
includes the effect of slope and wind sheltering. The
interpretation of b2 is not dependent on q or D0 because
these topographic parameters do not appear in the slope of
the relationship between h and the mean snow depth.
[54] The estimated base function coefficients for the

nonlinear trend model are shown in Table 4. Figure 4
illustrates the simple relationships between the four contin-
uous topographic parameters and snow depth for the 1998–
2003 data set. The simple relationship plots display the
effect of a topographic parameter on snow depth at the mean
values of all other topographic parameters (Table 3).
Because the squared terms of the slope and wind shelter
topographic parameters were found to be statistically
significant, the simple relationships for slope (Figure 4b)
and wind shelter (Figure 4d) are quadratic, while the
simple relationships for elevation (Figure 4a), radiation
(Figure 4c), and wind drift formation (not shown) are
linear.
[55] The uncertainty of the estimated relationship

increases toward the extremes of the topographic parameter
range and care should be taken in extrapolating these
relationships beyond measured conditions. For example,
very few measurements were taken on slopes exceeding
40�, so even though snow depth is predicted to increase for
steep slopes (Figure 4b) there is also significant uncertainty
in this extrapolation. Prior research efforts have noted that
snow will not remain on slopes steeper than a critical value
due to sloughing or avalanching [Blöschl et al., 1991; Balk
and Elder, 2000].
[56] Selected interactions between topographic parame-

ters are illustrated in Figure 5 for the 1998–2003 data set.
Figures 5a–5d illustrate the simple relationship between a

primary topographic parameter and snow depth for three
discrete values of a secondary topographic parameter,
assuming all other parameters are held constant at their
mean values (Table 3).
7.3.1. Potential Radiation
[57] When considered by itself, F is a significant predic-

tor of snow depth for the 1998–2003 data set, but the
magnitude of the effect is small (Figure 4c). The interaction
between F and Sx and the interaction between F and D0 are
also statistically significant (Table 4). The magnitude of the
effect of the interaction between F and Sx is illustrated in
Figures 5c and 5d, which show that increasing F leads to
lower predicted snow depths for exposed areas but has little
effect on snow depth for relatively sheltered areas. This
result may be because sheltered areas accumulate a fixed
amount of snow regardless of the radiation input, while the
amount of snow accumulating on exposed areas is affected
by radiation.
7.3.2. Wind Shelter
[58] The relationship between the wind shelter index and

snow depth was found to be quadratic and dependent on
elevation, slope, and the radiation index (Table 4). Of the
five topographic variables considered, the index of wind
sheltering consistently had the largest effect on snow depth
(Figure 4). Figures 5a and 5b illustrate the interaction
between Sx and h and how it affects the relationship with
snow depth. For high values of Sx, increasing values of
h predict lower snow depths, while for low values of Sx, the
effect of h on snow depth is minimal. This result may be due
to the accumulation of sloughed snow in sheltered areas
beneath steep faces, which primarily occurs at low eleva-
tions within the GLV, or due to the correlation between
elevation and higher wind speeds, which likely reduces the
effectiveness of the topographic sheltering.
7.3.3. Variogram Parameters
[59] The estimated parameters of the residual vario-

grams for the nonlinear trend model are presented in
Table 5 and compared in Figure 3c. The sill variance
parameter ranges from 0.77 to 2.95 m2 for the individual
year data sets and is 1.99 m2 for the 1998–2003 data set.
The sill variances are consistently lower than the sill
variances of the linear trend model, which suggests that
the nonlinear model has greater estimation accuracy
relative to the linear trend model. The exponential length
parameter ranges from 4.0 to 76 m for the individual year
data sets and is 26 m for the 1998–2003 data set. These
values are generally less than the length parameters of the
linear trend model, which suggests that the nonlinear
trend model does a better job of explaining the spatial
correlation of snow depth measurements relative to the
linear trend model.
[60] Similar to the linear trend model, the results for

the 1997 and 2002 data sets stand out for the nonlinear
trend model. The sill variance and length parameter for
the 1997 data set are greater than any of the other yearly
data sets, probably because relatively inaccurate topo-
graphic parameters were used due to the poor registration
of measurement locations. The sill variance and length
parameter for the 2002 data set are lower than for any of
the other yearly data sets, which suggests that topography
strongly controls the distribution of snow in the GLV
during low-precipitation winters. During high-precipitation
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winters the DEM may be a poorer representation of the
surface topography, because the terrain features of the
snow covered surface may be significantly different than
the snow-free surface.

7.4. Nugget Effect

[61] Practitioners often use variogram models that include
a nugget effect to describe the spatial variability of data.
Western et al. [1998] described two physical phenomena
that can lead to a nugget effect in the data. The first is
random measurement errors. In this study, random mea-
surement error is expected to be small due to the direct
method of measuring the phenomenon, namely probing
for snow depth. Using hand probes, snow depth mea-
surements can be easily read to within 5 cm, which
is small compared to the variance between samples
(Table 5). The second reason for the existence of a
nugget effect is that data have not been collected with a
sufficiently small spacing to reveal the continuous
behavior of the phenomenon, commonly referred to as
subgrid variability.

[62] One way subgrid variability can be characterized
is by analyzing another data set of the same phenome-
non, collected at a finer sample spacing. In 2003, we
collected an additional data set of 217 snow depth
measurements by sampling transects at approximately
5 m intervals. Measurement locations were recorded
using a Trimble Pathfinder with real-time differential
correction, which results in a nominal horizontal
accuracy of 0.6 m. Less accuracy is expected in moun-
tainous terrain, due to potential terrain effects. This data
set was analyzed using the same methods as the large-
scale data sets, and did not show a distinct nugget effect
in its residual variogram (Figure 6). Because of the lack
of a distinct nugget for the 5 m interval data set and the
small magnitude of the measurement errors, a nugget
effect was not included in the model variogram for the
large-scale data sets.
[63] The lack of a nugget effect does not mean that snow

distribution in the GLV is extraordinarily smooth. For
example, the optimized parameters for the constant trend
model and the 1998–2003 data set result in a predicted

Figure 4. Relationship plots that illustrate the effect of each of the continuous topographic parameters
on predicted snow depth in the context of a model with linear and nonlinear base functions (Table 4). The
y axis variable is the change in snow depth relative to the estimated snow depth (b1). For each plot all
other topographic parameters are set to their mean value throughout the GLV. The individual points
represent samples taken between 1998 and 2003.
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standard error of 0.35 m for snow depth for a separation
distance of 1 m.

7.5. Correlation to Precipitation Indices

[64] In each of the trend models, the coefficient b1,t
estimates the mean depth in the basin, when all topographic
parameters are held constant at their mean values. It is
reasonable to assume that this coefficient will be correlated
to the total winter snowfall. Additionally, because the
influence of topography on snow depth may differ depend-
ing on the total winter snowfall, it is reasonable to expect
that the variogram parameters will be affected by total
winter snowfall.
[65] The estimated mean snow depth, the exponential

variance, and the exponential length parameter of the vario-
gram model were plotted against the maximum SWE value
recorded at the University Camp SNOTEL station
(Figure 7). Six data sets (1998–2003) were used and the
critical value for a significant regression at the 0.05 level

Figure 6. Experimental variogram plots for the high-
density data set of 2003. Samples were taken along transects
at approximately 5 m intervals. No obvious nugget effect
component of the variogram was observed.

Figure 5. Relationship plots that illustrate the effect of selected topographic parameter interactions on
predicted snow depth in the context of a model with linear and nonlinear base functions (Table 4). The y
axis variable is the change in snow depth relative to the estimated snow depth (b1). The relationship
between the primary topographic variable (x axis) and the change in snow depth is shown for three
distinct values of a secondary topographic parameter, corresponding to the 25th, 50th, and 75th percentile
of the sample distribution of the topographic parameter.
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was R2 = 0.66. The University Camp SNOTEL maximum
SWE is a significant predictor of the mean snow depth for
the constant trend model (R2 = 0.90), the linear trend model
(R2 = 0.77), and the nonlinear trend model (R2 = 0.83). It
was also a significant predictor of the exponential variance
for the linear trend model (R2 = 0.70) and the nonlinear
trend model (R2 = 0.77), and a significant predictor of the
exponential length parameter for the nonlinear trend model
(R2 = 0.72).
[66] Normally, a large number of snow depth measure-

ments would need to be collected to construct a valid
correlation model. However, the significant regressions of
the exponential variance and length parameter suggest that

model parameters can be estimated from a simple index of
the winter severity.

8. Discussion

[67] Modeling the spatial distribution of snow in alpine
areas is considered by many researchers to be difficult due
to the extreme variability in measured snow properties.
While it is true that the snow properties exhibit high spatial
variability, a large portion of the variability can be attributed
to the rough topography and the redistribution by wind in
areas above tree line. Because topography, and to a lesser
extent wind, are constant from year to year, snow tends to
collect in similar areas. Consequently, if a basin is effec-
tively characterized by intense sampling and the effect of
topographic parameters on the properties is determined, one
could potentially make improved predictions of the spatial
distribution of snow in other years without the need for
intense sampling.
[68] Of the five topographic parameters we considered,

we found that the index of wind sheltering had the greatest
effect on the estimated snow depth. We attribute this result
to the observation that the strong wintertime winds blow in
a consistent direction in the GLV. This is a common
attribute of alpine areas, due to the topographic steering
of the rugged topography. Leydecker et al. [2001] observed
that snow tended to accumulate in the same areas in an
alpine valley of the Sierra Nevada. We would expect that the
effect of wind sheltering would be stronger in continental
climates relative to maritime climates because the lower
snow densities of continental snowpacks would increase
wind redistribution. In this paper wind redistribution was
quantified based on an index of wind sheltering, which can
be calculated from the dominant wind direction and a DEM.
The results of more elaborate process-based wind models,
such as Liston and Sturm [1998], could be used as base
functions, and would be expected to improve the modeling
of the spatial distribution of snow depth at the expense
of increased data requirements and computational effort.
Although the effects were not as large, all of the other
topographic parameters considered (elevation, slope, radia-
tion, and wind drift formation) were also found to be
significant predictors of snow depth.
[69] In this paper, the base functions of the trend models

were limited to simple topographic parameters or combina-
tions of two topographic parameters. However, the trend
model is quite general and other base functions could be
used, provided that they can be evaluated throughout the
entire study area. For example, the output of spatially
distributed snow models such as the Utah Energy Balance
(UEB) model [Tarboton and Luce, 1997] could be used as a
base function, and the methodology proposed in this paper
could then be used to evaluate the UEB output and its
relationship to topographic parameters.

8.1. Comparison to Regression Tree Methods

[70] Regression tree techniques have been employed in
recent years to distribute snow properties (Table 1). One
beneficial characteristic of regression trees is their ability to
model nonlinear relationships between topographic param-
eters and snow depth [Balk and Elder, 2000]. Regression
trees are built by subdividing the measurements into dis-
crete regions based on secondary variables. For each sub-

Figure 7. Linear regression of (a) the estimated mean
snow depth, (b) exponential variance, and (c) exponential
length parameter against the maximum recorded SWE
(15 November to 15 May) at the University Camp SNOTEL
site based on the 1998–2003 data sets.
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division, the optimal division is the one that will result in
the greatest reduction in the sum of squared residuals.
Winstral et al. [2002] presented a regression tree model
for the 1999 GLV data set, which we now compare to the
1999 nonlinear trend model parameterized with the CMG
methodology described in this paper.
[71] Maps of the snow depth estimated by the regression

tree presented by Winstral et al. [2002] and the CMG
method are presented in Figures 8a and 8b, respectively.
In general, the locations of relatively high and low snow

depth features are in agreement, however the CMG method
predicts higher values in the vicinity of the Arikaree Glacier
and lower depths on the flat bench north of Arikaree Peak
(Figure 8b), an area that is consistently wind scoured.
Overall, the CMG method produces a smoother distribution
of snow depths in contrast to the stepped transitions of
homogenous zones of the regression tree model. Both
models are able to estimate sharp transitions in snow depth
in areas where there are abrupt changes in terrain.
[72] The measurement subdivisions of the regression tree

and the optimal coefficients of the CMG model can be
compared qualitatively. Both models found that Sx has the
greatest effect on snow depth, with increasing values of
wind shelter predicting greater snow depths. Sx was the only
parameter that appeared along every path in the regression
tree model. Both models found the D0 flag to predict greater
snow depths. With one exception, the regression tree
predicts lower snow depth with increasing elevation, which
agrees with the optimal base function coefficient for h (b2 =
�0.60 cm of snow depth/m of elevation gain). Also, with
one exception, the regression tree predicts lower snow depth
with increasing F. In the CMG model, F was not found to
be significant by itself, but the interactions with q, Sx, and
D0 were found to be significant (Table 4). Two branches of
the regression tree model estimate lower values of snow
depth in areas where wind drifting is predicted to occur,
which is also predicted by the base function coefficient of
the CMG model for the interaction of F and D0 (b16 =
�1.84 cm/W m�2). None of the regression tree splits were
found to be based on q. The CMG model did not find q to be
significant by itself, but interactions with F, Sx, and D0 were
found to be significant (Table 4). In summary, many of the
measurement subdivisions of the regression tree model can
be interpreted using the base function coefficients of the
CMG model, although additional nonlinear features are
predicted by the CMG model.
[73] Users of spatially distributed models often cite the

squared correlation coefficient (R2) derived from the model
residuals as a measure of model performance. The regres-
sion tree model (R2 = 0.50) has a higher squared correlation
coefficient than the CMG model (R2 = 0.34) for the 1999
data. While this statistic does describe the fit of the model
to the measured samples, it is a poor estimate of the
model’s ability to predict the characteristics of the popula-
tion [Breiman et al., 1984]. While Breiman et al. [1984]
made this observation in the context of building regression
trees for uncorrelated data, the spatial correlation of model
residuals further complicates inference of the population
characteristics from the sample. For spatially correlated
data, statistics based on uncorrelated residuals should be
used to infer model performance, such as those presented by
Kitanidis [1991], rather than statistics based on correlated
residuals, such as R2.

8.2. Modeling Spatial Correlation

[74] As mentioned earlier, snow depth and SWE are
spatially continuous variables. Because of this, given a
physically reasonable deterministic model, the residual
errors of the model are expected to be spatially correlated
over some distance. These spatially correlated residuals
contains less ’information’ than a similar set of uncorrelated
residuals, which result in less precise estimates of variables
of interest, such as the effect of topographic parameters on

Figure 8. Estimated snow depth for 1999 modeled with
(a) the regression tree presented by Winstral et al. [2002],
(b) the deterministic component of the nonlinear CMG
model (equation (17)) optimized for the 1999 data set, and
(c) the deterministic component of the nonlinear CMG
model optimized for the multiyear (1998, 2000, 2001, 2002,
2003) data set and using the mean snow depth (b1)
estimated from the 1999 University Camp SNOTEL site
(Figure 7a).
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snow depth, snow depth estimates at unsampled locations,
or estimated basin averages of snow depth. A methodology
that does not recognize this reduction of useful information
would be expected to give less accurate results than a model
that does. The magnitude of the difference is dependent on
the range of spatial correlation and the sample spacing of
the data set used to calibrate the model.
[75] The kriging framework presented in this paper

accounts for the spatial correlation of model errors and
prevents inaccurate estimates due to spatial correlation for
any linear model. For the constant trend model, residual
errors were found to be correlated at distances up to 250 m.
For the nonlinear trend model, residual error correlation
lengths were estimated to be less than 10 m.
[76] Knowledge of the spatial correlation of model resid-

uals can be used to direct the improvement of deterministic
models by suggesting refinements of current base functions
or potential new base functions. For example, Figure 9
shows such a map for the nonlinear mean model residuals of
the 1999 data set (Figure 8b) which uses base function
coefficients optimized for the 1999 data set. Figure 9
indicates that snow depth is consistently underestimated
beneath the steep cliffs northwest of Green Lake 5. Incor-
porating a topographic parameter based on the potential for
avalanching and sloughing into the trend model could be
expected to improve the estimate in this region.

[77] The variogram parameters characterizing the spatial
correlation of residuals were found to be positively corre-
lated to indices based on common precipitation measure-
ments (Figures 7b and 7c). Practically, this means that a
relatively greater number of measurements is needed to
characterize the snow distribution during high-precipitation
winters than is needed to obtain the same accuracy of
predictions during low-precipitation winters.

8.3. Importance of Multiyear Data Sets

[78] The total snow depth data set analyzed in this paper
was more extensive than typical field sampling, both in
terms of number of snow depth measurements and the
number of years (Table 6). The advantage of analyzing a
multiyear data set is that it allows for the identification of
topographic controls that are significant across years.
[79] In many cases, the topographic parameters that were

determined to be statistically significant for the 1998–2003
multiyear data set were only significant for one or two of the
individual years, particularly for the linear trend model
(Table 4). All five of the topographic variables analyzed
were components of base functions that were found to be
significant predictors of snow depth in the GLV when
modeling the combined 1998–2003 data set with the
nonlinear trend model, while only 2 out of 7 of the
individual year data sets would have identified all five
topographic parameters as being significant (1999 and
2002). Considering the year-to-year variability in climate,
shorter duration studies may not identify all the significant
predictors of snow depth or SWE, which would limit the
predictive capability of any developed distribution models.
[80] The statistical power of tests to identify significant

base functions can be improved by reducing the standard
error of estimation of the base function coefficients by
(1) increasing the number of measurement points, (2) select-
ing sample locations that increase the variability of the base
function values, (3) explaining more of the data variability
with the deterministic model, and (4) selecting base functions
that are less correlated with each other.
[81] Base functions are more likely to be identified as

statistically significant for the 1998–2003 data set because
of points 1 and 2. Additionally, the magnitude of the effect
of a particular parameter can be better estimated from a
multiyear data set because the parameter estimation is less
affected by year-to-year variations in climate. Point 3 can be
accomplished by including the possibility of nonlinear
relationships between the topographic variables and snow
depth as we did with the nonlinear trend model. For
example, for the 1998–2003 data set the base function F
was not found to be significant for the linear trend model,
but was found to be significant in the nonlinear model
because the increased complexity of the model reduced the

Figure 9. The stochastic component (Qys
T
X̂) of the

estimated snow depth (equation (11)) for the 1999 nonlinear
CMG model. The model underpredicts (red) in the vicinity
of the Arikaree Glacier and at the cliff bases northwest of
Green Lake 5 and overpredicts (blue) on the southeast
slopes of Navajo Peak and the slopes northeast of Green
Lake 5.

Table 6. Summary of Snow Depth Measurements From Selected Snow Distribution Studies

Reference Location Basin Area, km2 Years Sampled Depth Samples

Elder et al. [1991] Emerald Lake Basin, California 1.2 3 2048
Elder et al. [1998] Blackcap Basin, California 92.8 1 700
Balk and Elder [2000] Loch Vale, Colorado 6.9 2 370
Erxleben et al. [2002] three sites, Colorado 3.0 1 1650
Stähli et al. [2002] Erlenbach, Switzerland 0.7 2 853
This study GLV, Colorado 2.3 7 3235
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standard error of estimation. Point 4 is limited by the
available auxiliary data and is a potential problem when
analyzing many parameters derived from the same source,
such as a DEM.

8.4. Spatially Distributing Point Measurements

[82] Even in years in which no snow depth sampling
occurs, an estimate of the spatial distribution of snow depth
in the GLV can be made based on the SNOTEL data
recorded at the University Camp (U-Camp) site. To illus-
trate this concept, we estimated the spatial distribution of
snow using the nonlinear trend model (equation (17)) for
1999 (Figure 8c). The mean snow depth, b1, was estimated
from maximum recorded SWE value at the U-Camp
SNOTEL site and a regression line that is similar to the
one presented in Figure 7a but does not include the 1999
data point. The remaining base function coefficients were
optimized for five years of depth measurements (1998,
2000, 2001, 2002, 2003) using the methodology described
in section 5.2. Therefore Figure 8c represents an estimate of
the snow depth in 1999 that is made without utilizing the
1999 snow depth measurements. Figure 8c predicts relative
snow distribution parameters that are similar to those
estimated by the snow depth map based on 1999 measure-
ments (Figure 8b), suggesting that the effect of the topo-
graphic controls is constant from year to year. Figure 8c
tends to estimate slightly higher snow depths than the snow
depth map based on 1999 measurements (Figure 8b) be-
cause the 1999 mean snow depth (190 cm) is below what
the regression line predicts (231 cm).
[83] If a limited number of measurements were collected

during a winter, these measurements could be used to
further improve the best estimate of snow depth in the
vicinity of the measurements by conditioning the estimate to
the collected data. Equation (11) illustrates this concept. The
optimized deterministic trend component, Xs B̂, is condi-
tioned to the available data by the stochastic component,
Qys

T
X̂, to produce a best estimate of the snow depth, ẑs. The

sill variance and exponential length parameter necessary to
parameterize the covariance matrix between the known and
estimate locations, Qys, could also be estimated from the
index of total precipitation using the regression lines pre-
sented in Figures 7b and 7c. In this manner, an estimate map
could be constructed that honors limited measurement
points and uses covariance parameters developed from other
densely sampled data sets to spatially distribute the estimate
in unsampled regions.

9. Conclusions

[84] Models of the spatial variation in snow depth in the
GLV were shown to benefit from incorporating spatially
variable topographic parameters into the deterministic model
of the mean. An index of wind sheltering was found to be
the most important parameter for predicting snow depth.
Elevation, slope, potential radiation, and an index of
wind drift formation were also found to be significant
predictors when nonlinear interactions of the parameters
were considered.
[85] The trend model can be conditioned to available

snow depth measurements by the use of a variogram model,
which characterizes the spatial variation of the model
residuals. The parameters of the variogram model were

found to be correlated to an index of total winter precipi-
tation. When modeling high-precipitation winters, model
residuals are correlated over longer distances and exhibit
greater variability at large separation distances.
[86] Multiyear data sets are more effective for identify-

ing parameters that affect snow depth than single year data
sets. Parameters that are significant predictors of snow
depth may not be identified in the analysis of single-year
data sets.
[87] Although this work identified parameters that are

significant predictors of snow depth for the GLV, the results
may be site-specific. Multisite models need to be analyzed
to identify parameters and processes that are significant for
a wide variety of locations.
[88] The presented modeling techniques are not specific

to topographic parameters, and could be used to evaluate
other spatially varying parameters. One particularly prom-
ising source of data are remote sensing instruments,
which can provide a wide array of spatially distributed
parameters such as snow covered area and canopy
density for forested sites. Including such parameters
may improve the general applicability of snow distribu-
tion models.
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