Geography 4321/5321, Snow Hydrology

Name and Initials \qquad SS\# \qquad

Write only in the designated spaces. This test has 205 total points but you will be graded on 200 possible points. Questions are worth different amounts. **Be explicit about the phase of water in your answers: ice, liquid, gas**.

FILL-IN THE BLANKS.

1. Ablation stakes work by measuring the change in \qquad over time (5 points).
2. A nitrate concentration of $12.3 \mathrm{mg} / \mathrm{L}$ is equal to \qquad ppm (5 points).
3. An ion with a negative charge is known as a(n) \qquad (5 points).
4. The pH is defined as the negative \log of the \qquad (5 points).
5. The pollutant of major concern in snowfall throughout the Rockies is \qquad (5 points).
6. Meltwater flow through snow generally occurs in \qquad (5 points).
7. The primary equation used to understand meltwater flow through snow is called
\qquad (5 points).
8. Isotopes of the same element differ in their \qquad (5 points).
9. The temperature index method of estimating snowmelt is based on the idea that provide an index of snowmelt (5 points).
10. 4 primary types of snowmelt models presented in class are:
\qquad
11. Three disadvantages of regression snowmelt models are:

12. Define an elution curve (10 points).
13. Draw a typical variogram and label the following components: lag distance, semivariance, range, and sill (10 points).
14. Define the degree day factor in the snowmelt runoff model (10 points). Be sure to include units.
15. What are the advantages of using stable water isotopes in mixing models? (10 points).
16. Explain why mercury loading is often greatest at high elevations and high-latitudes, far from emission sources. 25 points.

Initials $\quad 5 \quad$ Midterm III, Spring 04
17. Compare and contrast energy-balance snowmelt models with empirical models. 25 points.
18. Explain why pollution in snow (snowfall and snowpacks) is often worse than in rain. 50 points.

Initials $\quad 7 \quad$ Midterm III, Spring 04
18. Continue answer here.

HELPFUL CONSTANTS

speed of light	c	$2.997 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's (energy in each photon)	h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Boltzmann's (distribution of energy)	k	$1.381 \times 10^{-23} \mathrm{~J} \mathrm{deg}^{-1}$
Stefan-Boltzmann	σ	$5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{deg}^{-4}$

density of water	1,000	$\mathrm{~kg} \mathrm{~m}^{-3}$
density of ice		
density of air	1.25	$\mathrm{~kg} \mathrm{~m}^{-3}$
specific heat of water	4.2×10^{3}	$\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{deg}^{-1}$
specific heat of ice	1.9×10^{3}	$\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{deg}^{-1}$
specific heat of air	1.0×10^{3}	$\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{deg}^{-1}$
vol. heat capacity of water	4.2×10^{6}	$\mathrm{~J} \mathrm{~m}^{-3} \mathrm{deg}^{-1}$
vol. heat capacity of ice	1.9×10^{6}	$\mathrm{~J} \mathrm{~m}^{-3} \mathrm{deg}^{-1}$
vol. heat capacity of air	1.25×10^{3}	$\mathrm{~J} \mathrm{~m}^{-3} \mathrm{deg}^{-1}$
latent heat of fusion	3.34×10^{5}	$\mathrm{~J} \mathrm{~kg}^{-1}$
latent heat of vaporization	2.5×10^{6}	$\mathrm{~J} \mathrm{~kg}^{-1}$

HELPFUL EQUATIONS

$R+G+H+L_{v} E+\Delta F+\Delta M=0$
$E_{\lambda}=\frac{2 \pi h c^{2}}{\lambda^{5}[\exp (h c / k \lambda T)-1]} \quad$ and $\quad \int_{0}^{\infty} E_{\lambda} d \lambda=\sigma T^{4}$
$q=$ mass \times specific heat \times temperature change
$q=$ mass \times latent heat (use latent heat of fusion for ice/liquid)

Formulas and Tables

Energy balance equation $R+G+H+L E+$ Melt $+\Delta F=0$
runoff equation $Q_{n}=\operatorname{Melt}_{n}(1-K)+\operatorname{Melt}_{n-1} K$

Snow water equivalence $=h \times \frac{\rho_{\text {snow }}}{\rho_{\text {liquid }}}$
Stefan-Boltzmann equation $E_{\text {longwave }}=\varepsilon \sigma T^{4}$

Stefan-Boltzmann constant $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$

Psychrometric equation $C_{p}\left(T_{d}-T_{w}\right)=-L_{v}\left[q_{a}-q_{s}\left(T_{w}\right)\right]$

$$
\text { (solved for humidity) } q_{a}=q_{s}\left(T_{w}\right)-\frac{C_{p}}{L_{v}}\left(T_{d}-T_{w}\right)
$$

Hydrostatic equation $\frac{P}{P_{0}}=\left(\frac{T_{0}}{T_{0}+\gamma h}\right)^{g m / R \gamma}$
(γ is environmental lapse rate, $R=8.3 \mathrm{~J} / \mathrm{mole} / \mathrm{deg}$ is gas constant, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is gravitational acceleration, $m=.029 \mathrm{~kg} /$ mole is molecular weight of air)
$\beta=\frac{H}{L E}=\frac{\rho C_{p} D_{H}\left(\theta_{a}-\theta_{s}\right)}{\rho L_{v} D_{L E}\left(q_{a}-q_{s}\right)}=\frac{C_{p}\left(T_{a}-T_{s}\right)}{L_{v}\left(q_{a}-q_{s}\right)}$
shear $\operatorname{stress} \tau=\rho \times h \times g x \sin \theta$
$\mathrm{Q}=\mathrm{b}+\operatorname{SWE}(\mathrm{x})$
$M=M_{f}\left(T_{a}-T_{0}\right)$
$\mathrm{Q}=[(\mathrm{C}$ a T S $)+\mathrm{P}] \mathrm{A}$

